
RFC 9880
Semantic Definition Format (SDF) for Data and
Interactions of Things

Abstract
The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and
maintenance of data and interaction models that describe Things, i.e., physical objects that are
available for interaction over a network. An SDF specification describes definitions of SDF
Objects/SDF Things and their associated interactions (Events, Actions, and Properties), as well as
the Data types for the information exchanged in those interactions. Tools convert this format to
database formats and other serializations as needed.

Stream: Internet Engineering Task Force (IETF)
RFC: 9880
Category: Standards Track
Published: January 2026
ISSN: 2070-1721
Authors: M. Koster, Ed.

KTC Control AB
C. Bormann, Ed.
Universität Bremen TZI

A. Keränen
Ericsson

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9880

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Koster, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9880
https://www.rfc-editor.org/info/rfc9880
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Structure of This Document

1.2. Terminology and Conventions

1.2.1. Programming Platform Terms

1.2.2. Conceptual Terms

1.2.3. Specification Language Terms

1.2.4. Conventions

2. Overview

2.1. Example Definition

2.2. Elements of an SDF Model

2.2.1. sdfObject

2.2.2. sdfProperty

2.2.3. sdfAction

2.2.4. sdfEvent

2.2.5. sdfData

2.2.6. sdfThing

2.3. Member Names: Given Names and Quality Names

2.3.1. Given Names and Quality Names

2.3.2. Hierarchical Names

2.3.3. Extensibility of Given Names and Quality Names

3. SDF Structure

3.1. Information Block

3.2. Namespaces Block

3.3. Definitions Block

3.4. Top-Level Affordances and sdfData

4

5

5

5

6

6

8

8

8

10

11

12

12

13

13

14

14

14

15

15

16

16

18

19

20

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 2

4. Names and Namespaces

4.1. Structure

4.2. Contributing Global Names

4.3. Referencing Global Names

4.4. sdfRef

4.4.1. Resolved Models

4.5. sdfRequired

4.6. Common Qualities

4.7. Data Qualities

4.7.1. sdfType

4.7.2. sdfChoice

5. Keywords for Definition Groups

5.1. sdfObject

5.2. sdfProperty

5.3. sdfAction

5.4. sdfEvent

5.5. sdfData

6. High-Level Composition

6.1. Paths in the Model Namespaces

6.2. Modular Composition

6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition

6.3. sdfThing

7. IANA Considerations

7.1. Media Type

7.2. Content-Format

7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)

7.4. SenML Registry Group

7.5. Registries

7.5.1. SDF Quality Names

7.5.2. SDF Quality Name Prefixes

20

20

20

21

21

24

24

26

27

28

29

31

31

31

32

32

33

33

34

34

34

35

36

36

37

37

37

38

38

40

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 3

7.5.3. sdfType Values

7.5.4. SDF Feature Names

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Formal Syntax of SDF

Appendix B. json-schema.org Rendition of SDF Syntax

Appendix C. Data Qualities Inspired by json-schema.org

C.1. type "number", type "integer"

C.2. type "string"

C.3. type "boolean"

C.4. type "array"

C.5. type "object"

C.6. Implementation Notes

Appendix D. Composition Examples

D.1. Outlet Strip Example

D.2. Refrigerator-Freezer Example

Appendix E. Some Changes from Earlier Draft Versions of this Specification

List of Figures

List of Tables

Acknowledgements

Contributors

Authors' Addresses

41

41

42

43

43

45

47

52

84

85

85

86

86

86

87

87

87

88

89

90

90

91

91

91

1. Introduction
The Semantic Definition Format (SDF) is concerned with Things, namely physical objects that are
available for interaction over a network. SDF is a format for domain experts to use in the
creation and maintenance of data and interaction models that describe Things. An SDF
specification describes definitions of SDF Objects/SDF Things and their associated interactions

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 4

(Events, Actions, and Properties), as well as the Data types for the information exchanged in
those interactions. Tools convert this format to database formats and other serializations as
needed.

SDF is designed to be an extensible format. The present document constitutes the base
specification for SDF, "base SDF" for short. In addition, SDF extensions can be defined, some of
which may make use of extension points specifically defined for this in base SDF. One area for
such extensions would be refinements of SDF's abstract interaction models into protocol
bindings for specific ecosystems (e.g.,). For the use of certain other extensions, it
may be necessary to indicate in the SDF document using them that a specific extension is in
effect; see Section 3.1 for details of the features quality that can be used for such indications.
With extension points and feature indications available, base SDF does not define a "version"
concept for the SDF format itself (as opposed to version indications within SDF documents
indicating their own evolution; see Section 3.1).

[SDF-MAPPING]

1.1. Structure of This Document
After introductory material and an overview (Section 2) over the elements of the model and the
different kinds of names used, Section 3 introduces the main components of an SDF model.
Section 4 revisits names and structures them into namespaces. Section 5 discusses the inner
structure of the Objects defined by SDF, the sdfObjects, in further detail. Section 6 discusses how
SDF supports composition. Conventional Sections (IANA Considerations, Security Considerations,
Normative References, and Informative References) follow. The normative Appendix A defines
the syntax of SDF in terms of its JSON structures, employing the Concise Data Definition
Language (CDDL) . This is followed by the informative Appendix B, a rendition of the
SDF syntax in a "JSON Schema" format as they are defined by json-schema.org (collectively
called JSO). The normative Appendix C defines certain terms ("data qualities") used at the SDF
data model level that were inspired by JSO. The informative Appendix D provides a few
examples for the use of composition in SDF. Finally, Appendix E provides some historical
information that can be useful in upgrading earlier, pre-standard SDF models and
implementations to base SDF.

[RFC8610]

1.2. Terminology and Conventions
Terms introduced in this section are capitalized when used in this section. To maintain
readability, capitalization is only used when needed where they are used in the body of this
document.

Element:

1.2.1. Programming Platform Terms

The following definitions mention terms that are used with specific meanings in various
programming platforms, but often have an independent definition for this document, which can
be found further below in this section.

A generic term used here in its English sense. Exceptionally, in Appendix C, the term
is used explicitly in accordance with its meaning in the JSON ecosystem, i.e., the elements of
JSON arrays.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 5

Entry:

Map:

Object:

Property:

Byte:

A key-value pair in a map. (In JSON maps, sometimes also called "member".)

A collection of entries (key-value pairs) where there are no two entries with equivalent
keys. (Also known as associative array, dictionary, or symbol table.)

An otherwise very generic term that JavaScript (and thus JSON) uses for the kind of
maps that were part of the original languages from the outset. In this document, Object is
used exclusively in its general English meaning or as the colloquial shorthand for sdfObject,
even if the type name "object" is imported with JSON-related semantics from a data
definition language.

Certain environments use the term "property" for a JSON concept that JSON calls
"member" and is called "entry" here, or sometimes just for the map key of these. In this
document, the term Property is specifically reserved for a certain kind of Affordance, even if
the map key "properties" is imported with JSON-related semantics from a data definition
language.

This document uses the term "byte" in its now-customary sense as a synonym for "octet".

Thing:

Element:

Affordance:

Property:

Action:

Event:

1.2.2. Conceptual Terms

A physical item that is also available for interaction over a network.

A part or an aspect of something abstract; i.e., the term is used here in its usual
English definition.

An element of an interface offered for interaction. Such an element becomes an
Affordance when information is available (directly or indirectly) that indicates how it can or
should be used. In the present document, the term is used for the digital (network-directed)
interfaces of a Thing only; as it is a physical object as well, the Thing might also have physical
affordances such as buttons, dials, and displays. The specification language offers certain
ways to create sets of related Affordances and combine them into "Groupings" (see below).

An Affordance that can potentially be used to read, write, and/or observe state
(current/stored information) on a Grouping.

An Affordance that can potentially be used to perform a named operation on a
Grouping.

An Affordance that can potentially be used to obtain information about what happened
to a Grouping.

SDF Document:

1.2.3. Specification Language Terms

Container for SDF Definitions, together with data about the SDF Document
itself (information block). Represented as a JSON text representing a single JSON map, which
is built from nested maps.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 6

SDF Model:

Block:

Group:

Class Name Keyword:

Class:

Quality:

Definition:

Declaration:

Grouping:

Object, sdfObject:

sdfThing:

Definitions and declarations that model the digital interaction opportunities
offered by one or more kinds of Things, represented by Groupings (sdfObjects and sdfThings).
An SDF Model can be fully contained in a single SDF Document, or it can be built from an SDF
Document that references definitions and declarations from additional SDF documents. The
term SDF Specification can be used when the distinction between the distribution into
individual SDF Documents and the abstract nature of the SDF Model is not of interest.

One or more entries in a JSON map that is part of an SDF specification. These entries can
be described as a Block to emphasize that they serve a specific function together.

An entry in the top-level JSON map that represents the SDF document. Groups also can
be used in certain nested definitions. A group has a Class Name Keyword as its key and a map
of named definition entries (Definition Group) as a value.

One of sdfThing, sdfObject, sdfProperty, sdfAction, sdfEvent, or
sdfData. The Classes for these type keywords are capitalized and prefixed with sdf.

Abstract term for the information that is contained in groups identified by a Class Name
Keyword.

A metadata item in a definition or declaration that says something about that
definition or declaration. A quality is represented in SDF as an entry in a JSON map (JSON
object) that serves as a definition or declaration. (The term "Quality" is used because another
popular term, "Property", already has a different meaning.)

An entry in a Definition Group. The entry creates a new semantic term for use in
SDF models and associates it with a set of qualities. Unless the Class Name Keyword of the
Group also makes it a Declaration (see Section 3.3), a definition just defines a term and it does
not create a component item within the enclosing definition.

A definition within an enclosing definition that is intended to create a component
item within that enclosing definition. Every declaration can also be used as a definition for
reference elsewhere.

An sdfThing or sdfObject, i.e., (directly or indirectly) a description for a combination
of Affordances.

A Grouping where the declarations that it contains are for Affordances only
(Property, Action, and Event declarations). It serves as the main "atom" of reusable semantics
for model construction, representing the interaction model for a Thing that is simple enough
to not require a nested structure. Therefore, sdfObjects are similar to sdfThings, but do not
allow nesting, i.e., they cannot contain other Groupings (sdfObjects or sdfThings).

A Grouping that can contain nested Groupings (sdfThings and sdfObjects). Like
sdfObject, it can also contain Affordance declarations (Property, Action, and Event
declarations). (Note that "Thing" has a different meaning from sdfThing and is therefore not
available as a colloquial shorthand of sdfThing.)

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 7

Augmentation Mechanism:

Protocol Binding:

A companion document to a base SDF Model that provides
additional information ("augments" the base specification). The information may be for use
in a specific ecosystem or with a specific protocol ("Protocol Binding"). No specific
Augmentation Mechanisms are defined in base SDF. A simple mechanism for such
augmentations has been discussed as a "mapping file" .

A companion document to an SDF Model that defines how to map the
abstract concepts in the model into the protocols that are in use in a specific ecosystem. The
Protocol Binding might supply URL components, numeric IDs, and similar details. Protocol
Bindings are one case of an Augmentation Mechanism.

[SDF-MAPPING]

1.2.4. Conventions

Regular expressions that are used in the text as a "pattern" for some string are interpreted as per
. (Note that a form of regular expressions is also used as values of the quality pattern;

see Appendix C.2.)

The term "URI" in this document always refers to "full" URIs ("URI" in Section 3 of RFC 3986
), never to relative URI references ("relative-ref" in Section 4.1 of RFC 3986),

so the term "URI" does NOT serve as the colloquial abbreviation of "URI-Reference" it is often
used for. Therefore, the "reference resolution" process defined in Section 5 of RFC 3986 is
NOT used in this specification. Where necessary, full URIs are assembled out of substrings by
simple concatenation, e.g., when CURIEs are expanded (Section 4.3) or when a global name is
formed out of a namespace absolute-URI (Section 5 of RFC 3986) and a fragment
identifier part (Section 4.1). Also note that URIs are not only used to construct the SDF models,
they are also the subject of SDF models where they are used as data in actual interactions (and
could even be represented as relative references there); these two usages are entirely separate.

The singular form is chosen as the preferred one for the keywords defined in this specification.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC9485]

[STD66] [STD66]

[STD66]

[STD66]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Overview

2.1. Example Definition
The overview starts with an example for the SDF definition of a simple sdfObject called
"Switch" (Figure 1).

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc3986#section-3
https://rfc-editor.org/rfc/rfc3986#section-4.1
https://rfc-editor.org/rfc/rfc3986#section-5
https://rfc-editor.org/rfc/rfc3986#section-5

This is a model of a switch. The state value declared in the sdfProperty group, represented by a
Boolean, will be true for "on" and will be false for "off". The Actions on or off declared in the
sdfAction group are redundant with setting the value and are in the example to illustrate that
there are often different ways of achieving the same effect. The action toggle will invert the
value of the sdfProperty value so that 2-way switches can be created; having such action will
avoid the need for retrieving the current value first and then applying/setting the inverted value.

The sdfObject group lists the affordances of Things modeled by this sdfObject. The sdfProperty
group lists the Property affordances described by the model; these represent various
perspectives on the state of the sdfObject. Properties can have additional qualities to describe
the state more precisely. Properties can be annotated to be read, write, or read/write; how this is
actually done by the underlying transfer protocols is not described in the SDF model but left to
companion protocol bindings. Properties are often used with RESTful paradigms

Figure 1: A Simple Example of an SDF Document

{
 "info": {
 "title": "Example document for SDF (Semantic Definition Format)",
 "version": "2019-04-24",
 "copyright": "Copyright 2019 Example Corp. All rights reserved.",
 "license": "https://example.com/license"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "Switch": {
 "sdfProperty": {
 "value": {
 "description":
"The state of the switch; false for off and true for on.",
 "type": "boolean"
 }
 },
 "sdfAction": {
 "on": {
 "description":
"Turn the switch on; equivalent to setting value to true."
 },
 "off": {
 "description":
"Turn the switch off; equivalent to setting value to false."
 },
 "toggle": {
 "description":
"Toggle the switch; equivalent to setting value to its complement."
 }
 }
 }
 }
}

[REST-IOT]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 9

describing state. The sdfAction group is the mechanism to describe other interactions in terms
of their names, input, and output data (no data are used in the example), as in a POST method in
REST or in a remote procedure call. The example toggle is an Action that changes the state
based on the current state of the Property named value. (The third type of affordance is Events,
which are not described in this example.)

In the JSON representation, the info group is an exception in that this group's map has keys
taken from the SDF vocabulary. All other groups (such as namespace and sdfObject) have maps
with keys that are freely defined by the model writer (Switch, value, on, etc.). These map keys
are therefore called Given Names. The groups made up of entries with Given Names as keys
usually use the named<> production in the formal syntax of SDF (Appendix A). Where the values
of these entries are maps, these again use SDF vocabulary keys, and so on, generally alternating
in further nesting. The SDF-defined vocabulary items used in the hierarchy of such groups are
often, but not always, called Quality Names or qualities. See Section 2.3 for more information
about naming in SDF.

2.2. Elements of an SDF Model
The SDF language uses six predefined Class Name Keywords for modeling connected Things,
which are illustrated in Figure 2 (limited rendition in the plaintext form of this document, please
use typographic forms for full information).

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 10

The six main Class Name Keywords are discussed below.

Figure 2: Main Classes Used in SDF Models

sdfThing

sdfObject

sdfProperty sdfActionsdfEvent

sdfData

hasObject

0+

hasThing0+

hasProperty

0+

hasAction

0+

hasEvent

0+

hasProperty

0+

hasAction

0+

hasEvent

0+

hasInputData

0+

hasOutputData

0+

hasOutputData

0+

isInstanceOf

1

2.2.1. sdfObject

sdfObjects, the items listed in an sdfObject definition group, are the main "atom" of reusable
semantics for model construction. The concept aligns in scope with common definition items
from many IoT modeling systems, e.g., ZigBee Clusters , OMA SpecWorks LwM2M Objects

, OCF Resource Types , and W3C Web of Things Thing Descriptions .

An sdfObject definition contains a set of sdfProperty, sdfAction, and sdfEvent definitions that
describe the interaction affordances associated with some scope of functionality.

For the granularity of definition, sdfObject definitions are meant to be kept narrow enough in
scope to enable broad reuse and interoperability. For example, defining a light bulb using
separate sdfObject definitions for on/off control, dimming, and color control affordances will
enable interoperable functionality to be configured for diverse product types. An sdfObject
definition for a common on/off control may be used to control many different kinds of Things
that require on/off control.

[ZCL]
[OMA] [OCF] [WoT]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 11

The presence of one or both of the optional qualities "minItems" and "maxItems" defines the
sdfObject as an array, i.e., all the affordances defined for the sdfObject exist a number of times,
indexed by a number constrained to be between minItems and maxItems, inclusive, if given.
(Note: Setting "minItems" to zero and leaving out "maxItems" puts the minimum constraints on
that array.)

2.2.2. sdfProperty

sdfProperty is used to model elements of state within Things modeled by the enclosing
grouping.

A named definition entry in an sdfProperty may be associated with some protocol affordance to
enable the application to obtain the state variable and, optionally, modify the state variable.
Additionally, some protocols provide for in-time reporting of state changes. (These three aspects
are described by the qualities readable, writable, and observable defined for an sdfProperty.)

Definitions in sdfProperty groups look like the definitions in sdfData groups. However, they
actually declare that a Property with the given qualities potentially is present in the containing
sdfObject.

For definitions in sdfProperty and sdfData, SDF provides qualities that can constrain the
structure and values of data allowed in the interactions modeled by them. It also provides
qualities that associate semantics to this data, such as engineering units and unit scaling
information.

For the data definition within sdfProperty or sdfData, SDF borrows some vocabulary proposed
for drafts 4 and 7 of the json-schema.org "JSON Schema" format
(collectively called JSO here), enhanced by qualities that are specific to SDF. Details about the JSO-
inspired vocabulary are in Appendix C. For base SDF, data are constrained to be of simple types
(number, string, boolean), JSON maps composed of named data, and arrays of these types.
Syntax extension points are provided that can be used to provide richer types in a future
extension of this specification (possibly more of which can be borrowed from json-schema.org).

Note that sdfProperty definitions (and sdfData definitions in general) are not intended to
constrain the formats of data used for communication over network interfaces. Where needed,
data definitions for payloads of protocol messages are expected to be part of the protocol
binding.

[JSO4] [JSO4V] [JSO7] [JSO7V]

2.2.3. sdfAction

The sdfAction group contains declarations of Actions, which model affordances that, when
triggered, have an effect that can go beyond just reading, updating, or observing Thing state.
Actions often result in some outward physical effect (which, itself, cannot be modeled in SDF).
From a programmer's perspective, they might be considered to be roughly analogous to method
calls.

Actions may have data parameters; these are each modeled as a single item of input data and
output data. Where multiple parameters need to be modeled, an "object" type can be used to
combine these parameters into one; for an example, see Figure 6 in Appendix C.5.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 12

Actions may be long-running, that is to say that the effects may not take place immediately as
would be expected for an update to an sdfProperty; the effects may play out over time and emit
action results. Actions may also not always complete and may result in application errors, such
as an item blocking the closing of an automatic door.

One idiom for giving an action initiator status and control about the ongoing action is to provide
a URI for an ephemeral "action resource" in the sdfAction output data, allowing the action to
deliver immediate feedback (including errors that prevent the action from starting) and the
action initiator to use the action resource for further observation or modification of the ongoing
action (including canceling it). Base SDF does not provide any tailored support for describing
such action resources; an extension for modeling links in more detail (for instance,

) may be all that is needed to fully enable modeling them.

Actions may have (or lack) the characteristics of idempotence and side-effect safety (see Section
9.2 of RFC 9110 for more on these terms).

Base SDF only provides data constraint modeling and semantics for the input and output data of
definitions in sdfAction groups. Again, data definitions for payloads of protocol messages, and
detailed protocol settings for invoking the action, are expected to be part of the protocol binding.

[SDFTYPE-
LINK]

[STD97]

2.2.4. sdfEvent

The sdfEvent group contains declarations of Events, which model affordances that inform
about "happenings" associated with a Thing modeled by the enclosing sdfObject; these may
result in a signal being stored or emitted as a result.

Note that there is a trivial overlap with sdfProperty state changes, which may also be defined as
Events but are not generally required to be defined as such. However, Events may exhibit
certain ordering, consistency, and reliability requirements that are expected to be supported in
various implementations of sdfEvent that do distinguish sdfEvent from sdfProperty. For
instance, while a state change may simply be superseded by another state change, some Events
are "precious" and need to be preserved even if further Events follow.

Base SDF only provides data constraint modeling and semantics for the output data of Event
affordances. Again, data definitions for payloads of protocol messages, and detailed protocol
settings for soliciting the event, are expected to be part of the protocol binding.

2.2.5. sdfData

Definitions in sdfData groups do not themselves specify affordances. These definitions are
provided separately from those in sdfProperty groups to enable common modeling patterns,
data constraints, and semantic anchor concepts to be factored out for data items that make up
sdfProperty items and serve as input and output data for sdfAction and sdfEvent items. The data
types defined in sdfData definitions only spring to life by being referenced in one of these
contexts (directly or indirectly via some other sdfData definitions).

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 13

https://rfc-editor.org/rfc/rfc9110#section-9.2

It is a common use case for such a data definition to be shared between an sdfProperty item and
input or output parameters of an sdfAction or output data provided by an sdfEvent. sdfData
definitions also enable factoring out extended application data types, such as mode and machine
state enumerations to be reused across multiple definitions that have similar basic
characteristics and requirements.

2.2.6. sdfThing

Back at the top level, the sdfThing group enables definition of models for complex devices that
will use one or more sdfObject definitions. Like sdfObject, sdfThing groups allow for the
inclusion of interaction affordances, sdfData, as well as "minItems" and "maxItems" qualities.
Therefore, they can be seen as a superset of sdfObject groups, additionally allowing for
composition.

As a result, an sdfThing directly or indirectly contains a set of sdfProperty, sdfAction, and
sdfEvent definitions that describe the interaction affordances associated with some scope of
functionality.

A definition in an sdfThing group can refine the metadata of the definitions it is composed of:
other definitions in sdfThing groups or definitions in sdfObject groups.

2.3. Member Names: Given Names and Quality Names
SDF documents are JSON maps that mostly employ JSON maps as member values, which in turn
mostly employ JSON maps as their member values, and so on. This nested structure of JSON
maps creates a tree, where the edges are the member names (map keys) used in these JSON
maps. (In certain cases, where member names are not needed, JSON arrays may be interspersed
in this tree.)

2.3.1. Given Names and Quality Names

For any particular JSON map in an SDF document, the set of member names that are used is
either:

A set of "Quality Names", where the entries in the map are Qualities. Quality Names are
defined by the present specification and its extensions, together with specific semantics to
be associated with the member value given with a certain Quality Name.
A set of "Given Names", where the entries in the map are separate entities (definitions,
declarations, etc.) that each have names that are chosen by the SDF document author in
order that these names can be employed by a user of that model.

In a path from the root of the tree to any leaf, Quality Names and Given Names roughly alternate
(with the information block, Section 3.1, as a prominent exception).

The meaning of the JSON map that is the member value associated with a Given Name is derived
from the Quality Name that was used as the member name associated to the parent. In the CDDL
grammar given in Appendix A, JSON maps with member names that are Given Names are
defined using the CDDL generic rule reference named<membervalues>, where membervalues is in

•

•

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 14

turn the structure of the member values of the JSON map, i.e., the value of the member named
by the Given Name. As quality-named maps and given-named maps roughly alternate in a path
down the tree, membervalues is usually a map built from Quality Names as keys.

2.3.2. Hierarchical Names

From the outside of a specification, Given Names are usually used as part of a hierarchical name
that looks like a JSON Pointer . These hierarchical names are generally rooted in (used
as the fragment identifier in) an outer namespace that looks like an https:// URL (see Section
4).

As Quality Names and Given Names roughly alternate in a path into the model, the JSON Pointer
part of the hierarchical name also alternates between Quality Names and Given Names.

Note that the actual Given Names may need to be encoded when specified via the JSON Pointer
fragment identifier syntax. There are two layers of such encoding: tilde encoding of ~ and / as
per , as well as percent encoding of the tilde-encoded name into a valid
URI fragment as per . For example, when a model is using the Given Name

(with an embedded slash and a space) for an sdfObject, that sdfObject may need to be referenced
as

To sidestep potential interoperability problems, it is probably wise to avoid characters in Given
Names that need such encoding (Quality Names are already defined in such a way that they
never do).

[RFC6901]

Section 3 of [RFC6901]
Section 6 of [RFC6901]

 warning/danger alarm

 #/sdfObject/warning~1danger%20alarm

2.3.3. Extensibility of Given Names and Quality Names

In SDF, both Quality Names and Given Names are extension points. This is more obvious for
Quality Names. Extending SDF is mostly done by defining additional qualities. To enable non-
conflicting third party extensions to SDF, qualified names (names with an embedded colon) can
be used as Quality Names.

A nonqualified Quality Name is composed of ASCII letters, digits, and $ signs, starting with a
lowercase letter or a $ sign (i.e., using a pattern of "[a-z$][A-Za-z$0-9]*"). Names with $ signs
are intended to be used for functions separate from most other names; for instance, $comment is
used for the comment quality in this specification (the presence or absence of a $comment
quality does not change the meaning of the SDF model). Names that are composed of multiple
English words can use the "lowerCamelCase" convention for indicating the word
boundaries; no other use is intended for upper case letters in Quality Names.

[CamelCase]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 15

https://rfc-editor.org/rfc/rfc6901#section-3
https://rfc-editor.org/rfc/rfc6901#section-6

A qualified Quality Name is composed of a Quality Name Prefix, a : (colon) character, and a
nonqualified Quality Name. Quality Name Prefixes are registered in the "Quality Name Prefixes"
registry in the "Semantic Definition Format (SDF)" registry group (Section 7.5.2). They are
composed of lowercase ASCII letters and digits, starting with a lowercase ASCII letter (i.e., using
a pattern of "[a-z][a-z0-9]*").

Given Names are not restricted by the formal SDF syntax. To enable non-surprising name
translations in tools, combinations of ASCII alphanumeric characters and - (ASCII hyphen/
minus) are preferred, typically employing kebab-case for names constructed out of multiple
words . ASCII hyphen/minus can then unambiguously be translated to an ASCII _
underscore character and back depending on the programming environment. Some styles also
allow a dot (".") in Given Names. Given Names are often sufficiently self-explanatory that they
can be used in place of the label quality if that is not given. In turn, if a Given Name turns out
too complicated, a more elaborate label can be given and the Given Name kept simple. As Given
Names are "programmers' names", base SDF does not address internationalization of Given
Names. (More likely qualities to receive localizable equivalents by exercising the Quality Name
extension point are label and description).

Further, to enable Given Names to have a more powerful role in building global hierarchical
names, an extension is foreseen that makes use of qualified names for Given Names. So, until
that extension is defined, Given Names with one or more embedded colons are reserved and

 be used in an SDF document.

All names in SDF are case-sensitive.

[KebabCase]

MUST NOT

3. SDF Structure
SDF definitions are contained in SDF documents together with data about the SDF document
itself (information block). Definitions and declarations from additional SDF documents can be
referenced; together with the definitions and declarations in the referencing SDF document,
they build the SDF model expressed by that SDF document.

Each SDF document is represented as a single JSON map. This map can be thought of as having
three blocks: the information block, the namespaces block, and the definitions block. These
blocks contain zero or more JSON name/value pairs, the names of which are Quality Names and
the values of which mostly are (nested) maps (the exception defined in base SDF is the
defaultNamespace quality, the value of which is a text string). An empty nested map of this kind
is equivalent to not having the quality included at all.

3.1. Information Block
The information block contains generic metadata for the SDF document itself and all included
definitions. To enable tool integration, the information block is optional in the grammar of SDF;
most processes for working with SDF documents will have policies that only SDF documents
with an info block can be processed. It is therefore that SDF validator tools emit
a warning when no information block is found.

RECOMMENDED

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 16

The keyword (map key) that defines an information block is "info". The keyword's value is a
nested JSON map with a set of entries that represent qualities that apply to the included
definitions.

Qualities of this map are shown in Table 1. None of these qualities are required or have default
values that are assumed if the quality is absent.

The version quality is used to indicate version information about the set of definitions in the SDF
document. The version is to be lexicographically increasing over the life of a
model; a newer model always has a version string that string-compares higher than all previous
versions. This is easily achieved by following the convention to start the version with a date-
time as defined in or, if new versions are generated less frequently than once a day,
just the full-date (i.e., YYYY-MM-DD); in many cases, that will be all that is needed (see Figure 1
for an example). This specification does not give a strict definition for the format of the version
string, but each system or organization using the version string should define internal structure
and semantics to the level needed for their use. If no further details are provided, a date-time or
full-date in this field can be assumed to indicate the latest update time of the definitions in the
SDF document.

The modified quality can be used with a value using date-time as defined in (with Z
for time-zone) or full-date format to express time of the latest revision of the definitions.

The license string is preferably either a URI that points to a web page with an unambiguous
definition of the license or an license identifier. (As an example, for models to be handled
by the One Data Model liaison group, this license identifier will typically be "BSD-3-Clause".)

The features quality can be used to list names of critical (i.e., cannot be safely ignored) SDF
extension features that need to be understood for the definitions to be properly processed.
Extension feature names will be specified in extension documents. They can either be registered

Quality Type Description

title string A short summary to be displayed in search results, etc.

description string Long-form text description (no constraints)

version string The incremental version of the definition

modified string Time of the latest modification

copyright string Link to text or embedded text containing a copyright notice

license string Link to text or embedded text containing license terms

features array of strings List of extension features used

$comment string Source code comments only, no semantics

Table 1: Qualities of the Information Block

RECOMMENDED

[RFC3339]

[RFC3339]

[SPDX]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 17

(see Section 7.5.4 for specifics, which make sure that a registered feature name does not contain
a colon) or be a URI (which always contain a colon). Note that SDF processors are not expected
to, and normally , dereference URIs used as feature names; any representation
retrievable under such a URI could be useful to humans, though. (See for a
more extensive discussion of dereferenceable identifiers).

SHOULD NOT
[DEREF-ID-PATTERN]

3.2. Namespaces Block
The namespaces block contains the namespace map and the defaultNamespace setting; none of
these qualities are required or have default values that are assumed if the quality is absent.

The namespace map is a map from short names for URIs to the namespace URIs themselves.

The defaultNamespace setting selects one of the entries in the namespace map by giving its short
name. The associated URI (value of this entry) becomes the default namespace for the SDF
document.

The following example declares a set of namespaces and defines cap as the default namespace.
By convention, the values in the namespace map contain full URIs without a fragment identifier
and the fragment identifier is then added, if needed, where the namespace entry is used.

Multiple SDF documents can contribute to the same namespace by using the same namespace
URI for the default namespace across the documents.

If no defaultNamespace setting is given, the SDF document does not contribute to a global
namespace (all definitions remain local to the model and are not accessible for re-use by other
models). As the defaultNamespace is set by supplying a namespace short name, its presence
requires a namespace map that contains a mapping for that namespace short name.

If no namespace map is given, no short names for namespace URIs are set up and no
defaultNamespace can be given.

Quality Type Description

namespace map Defines short names mapped to namespace URIs, to be used as
identifier prefixes

defaultNamespace string Identifies one of the prefixes in the namespace map to be used
as a default in resolving identifiers

Table 2: Namespaces Block

"namespace": {
 "cap": "https://example.com/capability/cap",
 "zcl": "https://zcl.example.com/sdf"
},
"defaultNamespace": "cap"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 18

3.3. Definitions Block
The Definitions block contains one or more groups, each identified by a Class Name Keyword
such as sdfObject or sdfProperty. There can only be one group per keyword at this level;
putting all the individual definitions in the group under that keyword is just a shortcut for
identifying the class name keyword that applies to each of them without repeating it for each
definition.

The value of each group is a JSON map, the keys of which serve for naming the individual
definitions in this group, and the corresponding values provide a set of qualities (name-value
pairs) for the individual definition. (In short, these map entries are also termed "named sets of
qualities".)

Each group may contain zero or more definitions. Each identifier defined creates a new type and
term in the target namespace. Declarations have a scope of the definition block they are directly
contained in.

In turn, a definition may contain other definitions. Each definition is a named set of qualities,
i.e., it consists of the newly defined identifier and a set of key-value pairs that represent the
defined qualities and contained definitions.

An example for an sdfObject definition is given in Figure 3:

This example defines an sdfObject "foo" that is defined in the default namespace (full address: #/
sdfObject/foo), containing a Property that can be addressed as #/sdfObject/foo/
sdfProperty/bar, with data of type boolean.

Often, definitions are also declarations. The definition of the entry "bar" in the Property "foo"
means that data corresponding to the "foo" Property in a Property interaction offered by Thing
can have zero or one components modeled by "bar". Entries within sdfProperty, sdfAction,
and sdfEvent that are in turn within sdfObject or sdfThing entries, are also declarations;
entries within sdfData are not. Similarly, sdfObject or sdfThing entries within an sdfThing
definition specify that the interactions offered by a Thing modeled by this sdfThing include the
interactions modeled by the nested sdfObject or sdfThing.

Figure 3: Example sdfObject Definition

"sdfObject": {
 "foo": {
 "sdfProperty": {
 "bar": {
 "type": "boolean"
 }
 }
 }
}

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 19

3.4. Top-Level Affordances and sdfData
Besides their placement within an sdfObject or sdfThing, affordances (i.e., sdfProperty,
sdfAction, and sdfEvent) as well as sdfData can also be placed at the top level of an SDF
document. Since they are not associated with an sdfObject or sdfThing, these kinds of definitions
are intended to be reused via the sdfRef mechanism (see Section 4.4).

4. Names and Namespaces
SDF documents may contribute to a global namespace and may reference elements from that
global namespace. (An SDF document that does not set a defaultNamespace does not contribute
to a global namespace.)

4.1. Structure
Global names look exactly like https:// URIs with attached fragment identifiers.

There is no intention to require that these URIs can be dereferenced. (However, as future
extensions of SDF might find a use for dereferencing global names, the URI should be chosen in
such a way that this may become possible in the future. See also for a
discussion of dereferenceable identifiers.)

The absolute-URI of a global name should be a URI as per Section 3 of RFC 3986 with a
scheme of "https" and a path (hier-part in). For base SDF, the query part should not be
used (it might be used in extensions).

The fragment identifier is constructed as per .

[DEREF-ID-PATTERN]

[STD66]
[STD66]

Section 6 of [RFC6901]

4.2. Contributing Global Names
The fragment identifier part of a global name defined in an SDF document is constructed from a
JSON Pointer that selects the element defined for this name in the SDF document. The absolute-
URI part is a copy of the default namespace.

As a result, the default namespace is always the target namespace for a name for which a
definition is contributed. In order to emphasize that name definitions are contributed to the
default namespace, this namespace is also termed the "target namespace" of the SDF document.

For instance, in Figure 1, definitions for the following global names are contributed:

https://example.com/capability/cap#/sdfObject/Switch
https://example.com/capability/cap#/sdfObject/Switch/sdfProperty/value
https://example.com/capability/cap#/sdfObject/Switch/sdfAction/on
https://example.com/capability/cap#/sdfObject/Switch/sdfAction/off
https://example.com/capability/cap#/sdfObject/Switch/sdfAction/toggle

•
•
•
•
•

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 20

https://rfc-editor.org/rfc/rfc3986#section-3
https://rfc-editor.org/rfc/rfc6901#section-6

Note the #, which separates the absolute-URI part (Section 4.3 of RFC 3986) from the
fragment identifier part (including the #, a JSON Pointer as in).

[STD66]
Section 6 of [RFC6901]

4.3. Referencing Global Names
A name reference takes the form of the production curie in Section 3 of

, but limiting the IRIs involved in that grammar to URIs as per and the
prefixes to ASCII characters . (Note that this definition does not make use of the
production safe-curie in .)

A name that is contributed by the current SDF document can be referenced by a Same-Document
Reference as per Section 4.4 of RFC 3986 . As there is little point in referencing the entire
SDF document, this will be a # followed by a JSON Pointer. This is the only kind of name
reference to itself that is possible in an SDF document that does not set a default namespace.

Name references that point outside the current SDF document need to contain CURIE prefixes.
These then reference namespace declarations in the namespaces block.

For example, if a namespace prefix is defined:

then this reference to that namespace:

references the global name:

Note that there is no way to provide a URI scheme name in a CURIE, so all references to outside
of the document need to go through the namespace map.

Name references occur only in specific elements of the syntax of SDF:

copying elements via sdfRef values
pointing to elements via sdfRequired value elements

[W3C.NOTE-
curie-20101216] [STD66]

[STD80]
[W3C.NOTE-curie-20101216]

[STD66]

"namespace": {
 "foo": "https://example.com/"
}

"sdfRef": "foo:#/sdfData/temperatureData"

"https://example.com/#/sdfData/temperatureData"

•
•

4.4. sdfRef
In a JSON map establishing a definition, the keyword sdfRef is used to copy the qualities and
enclosed definitions of the referenced definition, indicated by the included name reference, into
the newly formed definition. (This can be compared to the processing of the $ref keyword in

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 21

https://rfc-editor.org/rfc/rfc3986#section-4.3
https://rfc-editor.org/rfc/rfc6901#section-6
https://rfc-editor.org/rfc/rfc3986#section-4.4

.) The referenced definition should be such that, after copying and applying the additional
qualities in the referencing definition, the newly built definition is also valid SDF (e.g., the copied
qualities and definitions are valid in the context of the new definition).

For example, this reference:

creates a new definition "temperatureProperty" that contains all of the qualities defined in the
definition at /sdfData/temperatureData.

The sdfRef member need not be the only member of a map. Additional members may be present
with the intention of overriding parts of the referenced map or adding new qualities or
definitions.

When processing sdfRef, if the target definition contains also sdfRef (i.e., is based on yet another
definition), that be processed as well.

More formally, for a JSON map that contains an sdfRef member, the semantics are defined to be
as if the following steps were performed:

The JSON map that contains the sdfRef member is copied into a variable named "patch".
The sdfRef member of the copy in "patch" is removed.
The JSON Pointer that is the value of the sdfRef member is dereferenced and the result is
copied into a variable named "original".
The JSON Merge Patch algorithm is applied to patch the contents of "original"
with the contents of "patch".
The result of the Merge Patch is used in place of the value of the original JSON map.

Note that the formal syntaxes given in Appendices A and B generally describe the result of
applying a merge-patch. The notations are not powerful enough to describe, for instance, how
the merge-patch algorithm causes null values within the sdfRef to remove members of JSON
maps from the referenced target. Nonetheless, the syntaxes also give the syntax of the sdfRef
itself, which vanishes during the resolution; therefore, in many cases, even merge-patch inputs
will validate with these formal syntaxes.

Given the example (Figure 1) and the following definition:

[JSO7]

"temperatureProperty": {
 "sdfRef": "#/sdfData/temperatureData"
}

MUST

1.
2.
3.

4. [RFC7396]

5.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 22

The resulting definition of the "BasicSwitch" sdfObject would be identical to the definition of the
"Switch" sdfObject, except it would not contain the "toggle" Action.

{
 "info": {
 "title": "Example light switch using sdfRef"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "BasicSwitch": {
 "sdfRef": "cap:#/sdfObject/Switch",
 "sdfAction": {
 "toggle": null
 }
 }
 }
}

{
 "info": {
 "title": "Example light switch using sdfRef"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "BasicSwitch": {
 "sdfProperty": {
 "value": {
 "description":
"The state of the switch; false for off and true for on.",
 "type": "boolean"
 }
 },
 "sdfAction": {
 "on": {
 "description":
"Turn the switch on; equivalent to setting value to true."
 },
 "off": {
 "description":
"Turn the switch off; equivalent to setting value to false."
 }
 }
 }
 }
}

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 23

4.4.1. Resolved Models

A model where all sdfRef references are processed as described in Section 4.4 is called a
resolved model.

For example, given the following sdfData definitions:

the definitions would look as follows after being resolved:

"sdfData": {
 "Coordinate" : {
 "type": "number", "unit": "m"
 },
 "X-Coordinate" : {
 "sdfRef" : "#/sdfData/Coordinate",
 "description":
"Distance from the base of the Thing along the X axis."
 },
 "Non-neg-X-Coordinate" : {
 "sdfRef": "#/sdfData/X-Coordinate",
 "minimum": 0
 }
}

"sdfData": {
 "Coordinate" : {
 "type": "number", "unit": "m"
 },
 "X-Coordinate" : {
 "description":
"Distance from the base of the Thing along the X axis.",
 "type": "number", "unit": "m"
 },
 "Non-neg-X-Coordinate" : {
 "description":
"Distance from the base of the Thing along the X axis.",
 "minimum": 0, "type": "number", "unit": "m"
 }
}

4.5. sdfRequired
The keyword sdfRequired is provided to apply a constraint that defines for which declarations
the corresponding data are mandatory in a grouping (sdfThing or sdfObject) modeled by the
current definition.

The value of sdfRequired is an array of references, each indicating one or more declarations
that are mandatory to be represented.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 24

References in this array can be SDF names (JSON Pointers) or one of two abbreviated reference
formats:

A text string with a "referenceable-name", namely an affordance name or a grouping name:

All affordance declarations that are directly in the same grouping (i.e., not nested further
in another grouping) and that carry this name are declared to be mandatory to be
represented. Note that there can be multiple such affordance declarations, one per
affordance type.
The same applies to groupings made mandatory within groupings containing them.

The Boolean value true. The affordance or grouping itself that carries the sdfRequired
keyword is declared to be mandatory to be represented.

Note that referenceable-names are not subject to the encoding JSON Pointers require as
discussed in Section 2.3.2. To ensure that referenceable-names are reliably distinguished from
JSON Pointers, they are defined such that they cannot contain ":" or "#" characters (see rule
referenceable-name in Appendix A). (If these characters are indeed contained in a Given Name,
a JSON Pointer needs to be formed instead in order to reference it in "sdfRequired", potentially
requiring further path elements as well as JSON Pointer encoding. The need for this is best
avoided by choosing Given Names without these characters.)

The example in Figure 4 shows two required elements in the sdfObject definition for
"temperatureWithAlarm", the sdfProperty "currentTemperature", and the sdfEvent
"overTemperatureEvent". The example also shows the use of JSON Pointers with "sdfRef" to use
a pre-existing definition for the sdfProperty "currentTemperature" and for the sdfOutputData
produced by the sdfEvent "overTemperatureEvent".

•

◦

◦

•

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 25

In Figure 4, the same sdfRequired can also be represented in short form:

Or, for instance, "overTemperatureEvent" could carry:

Figure 4: Using sdfRequired

"sdfObject": {
 "temperatureWithAlarm": {
 "sdfRequired": [
"#/sdfObject/temperatureWithAlarm/sdfProperty/currentTemperature",
"#/sdfObject/temperatureWithAlarm/sdfEvent/overTemperatureEvent"
],
 "sdfData":{
 "temperatureData": {
 "type": "number"
 }
 },
 "sdfProperty": {
 "currentTemperature": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData",
 "writable": false
 }
 },
 "sdfEvent": {
 "overTemperatureEvent": {
 "sdfOutputData": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"
 }
 }
 }
 }
}

 "sdfRequired": ["currentTemperature", "overTemperatureEvent"]

 "overTemperatureEvent": {
 "sdfRequired": [true],
 "...": "..."
 }

4.6. Common Qualities
Definitions in SDF share a number of qualities that provide metadata for them. These are listed
in Table 3. None of these qualities are required or have default values that are assumed if the
quality is absent. If a short textual description is required for an application and no label is
given in the SDF model, applications could use the last part (the last reference-token,

) of the JSON Pointer to the definition in its place.
Section 3

of [RFC6901]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 26

https://rfc-editor.org/rfc/rfc6901#section-3

Quality Type Description

description string long text (no constraints)

label string short text (no constraints)

$comment string source code comments only, no semantics

sdfRef sdf-pointer (see Section 4.4)

sdfRequired pointer-list (see Section 4.5, used in affordances or groupings)

Table 3: Common Qualities

4.7. Data Qualities
Data qualities are used in sdfData and sdfProperty definitions, which are named sets of data
qualities (abbreviated as named-sdq).

These qualities include the common qualities, JSO-inspired qualities (see below), and data
qualities defined specifically for the present specification; the latter are shown in Table 4.

Appendix C lists data qualities inspired by the various proposals at json-schema.org; the
intention is that these (information model-level) qualities are compatible with the (data model)
semantics from the versions of the json-schema.org proposal they were imported from.

Quality Type Description Default

(common) Section 4.6

unit string unit name (note 1) N/A

nullable boolean indicates a null value is available for
this type

true

contentFormat string content type (IANA media type string
plus parameters), encoding (note 2)

N/A

sdfType string (Section 4.7.1) sdfType enumeration (extensible) N/A

sdfChoice named set of data
qualities (Section
4.7.2)

named alternatives N/A

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 27

The unit name be as per the "SenML Units" registry or the "Secondary Units"
registry in as specified by Sections 4.5.2 and 12.1 of and

, respectively.

Exceptionally, if a registration in these registries cannot be obtained or would be
inappropriate, the unit name can also be a URI that is pointing to a definition of the unit.
Note that SDF processors are not expected to, and normally , dereference these
URIs; the definition pointed to may be useful to humans, though. (See
for a more extensive discussion of dereferenceable identifiers).

For use by translators into ecosystems that require URIs for unit names, the URN sub-
namespace "urn:ietf:params:unit" is provided (Section 7.3). URNs from this sub-namespace

 be used in a unit quality in favor of simply notating the unit name (such as kg
instead of urn:ietf:params:unit:kg) except where the unit name contains a colon and can
therefore not be directly used in SDF.

The contentFormat quality follows the Content-Format-Spec as defined in
, allowing for expressing both numeric and string based Content-Formats.

Quality Type Description Default

enum array of strings abbreviation for string-valued named
alternatives

N/A

Table 4: SDF-Defined Qualities of sdfData and sdfProperty

1. SHOULD
[IANA.senml] [RFC8428] Section 3 of

[RFC8798]

SHOULD NOT
[DEREF-ID-PATTERN]

A URI unit name is distinguished from a registered unit name by the presence of a colon;
therefore, any registered unit names that contain a colon (at the time of writing, none)
cannot be directly used in SDF.

MUST NOT

2. Section 6 of
[RFC9193]

4.7.1. sdfType

SDF defines a number of basic types beyond those provided by JSON or JSO. These types are
identified by the sdfType quality, which is a text string from a set of type names defined by the
"sdfType values" registry in the "Semantic Definition Format (SDF)" registry group (Section 7.5.3).
The sdfType name is composed of lowercase ASCII letters, digits, and - (ASCII hyphen/minus)
characters, starting with a lowercase ASCII letter (i.e., using a pattern of "[a-z][-a-z0-9]*")
and typically employing kebab-case for names constructed out of multiple words .

To aid interworking with JSO implementations, it is that sdfType is always used
in conjunction with the type quality inherited from in such a way as to yield a common
representation of the type's values in JSON.

Values for sdfType that are defined in this specification are shown in Table 5. This table also
gives a description of the semantics of the sdfType, the conventional value for type to be used
with the sdfType value, and a conventional JSON representation for values of the type. The type
and the JSON representation are chosen to be consistent with each other; this be true for
additionally registered sdfType values as well.

[KebabCase]

RECOMMENDED
[JSO7V]

MUST

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 28

https://rfc-editor.org/rfc/rfc8428#section-4.5.2
https://rfc-editor.org/rfc/rfc8428#section-12.1
https://rfc-editor.org/rfc/rfc8798#section-3
https://rfc-editor.org/rfc/rfc9193#section-6

(1) Note that the definition of unix-time does not imply the capability to represent points in
time that fall on leap seconds. More date/time-related sdfTypes are likely to be added in the
sdfType value registry.

Name Description type JSON
Representation

Reference

byte-
string

A sequence of zero
or more bytes

string base64url without
padding

Section 3.4.5.2 of RFC
8949

unix-
time

A point in civil time
(note 1)

number POSIX time Section 3.4.2 of RFC
8949

Table 5: Values Defined in Base SDF for the sdfType Quality

[STD94]

[STD94]

4.7.2. sdfChoice

Data can be a choice of named alternatives called sdfChoice. Each alternative is identified by a
name (string, key in the outer JSON map used to represent the overall choice) and a set of
dataqualities (each in an inner JSON map, the value used to represent the individual alternative
in the outer JSON map). Dataqualities that are specified at the same level as the sdfChoice apply
to all choices in the sdfChoice except those specific choices where the dataquality is overridden
at the choice level.

sdfChoice merges the functions of two constructs found in :

enum

What could be expressed as:

in JSO, is often best represented as:

This allows the placement of other dataqualities such as description in the example.

If an enum needs to use a data type different from the text string, what would, for instance,
have been:

[JSO7V]

•

"enum": ["foo", "bar", "baz"]

"sdfChoice": {
 "foo": { "description": "This is a foonly"},
 "bar": { "description":
 "As defined in the second world congress"},
 "baz": { "description": "From bigzee foobaz"}
}

"type": "number",
"enum": [1, 2, 3]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 29

https://rfc-editor.org/rfc/rfc8949#section-3.4.5.2
https://rfc-editor.org/rfc/rfc8949#section-3.4.2

in JSO, is represented as:

where the string names obviously would be chosen in a way that is descriptive for what
these numbers actually stand for; sdfChoice also makes it easy to add number ranges into
the mix.

(Note that const can also be used for strings as in the previous example, for instance, if the
actual string value is indeed a crucial element for the data model.)

anyOf

JSO provides a type union called anyOf, which provides a choice between anonymous
alternatives.

What could have been in JSO:

can be more descriptively notated in SDF as:

Note that there is no need in SDF for the type intersection construct allOf or the peculiar type-
xor construct oneOf found in .

As a simplification for users of SDF models who are accustomed to the JSO enum keyword, this is
retained, but limited to a choice of text string values, such that:

is syntactic sugar for:

"type": "number",
"sdfChoice": {
 "a-better-name-for-alternative-1": { "const": 1 },
 "alternative-2": { "const": 2 },
 "the-third-alternative": { "const": 3 }
}

•

"anyOf": [
 {"type": "array", "minItems": 3, "maxItems": "3",
 "items": {"$ref": "#/sdfData/rgbVal"}},
 {"type": "array", "minItems": 4, "maxItems": "4",
 "items": {"$ref": "#/sdfData/cmykVal"}}
]

"sdfChoice": {
 "rgb": {"type": "array", "minItems": 3, "maxItems": "3",
 "items": {"sdfRef": "#/sdfData/rgbVal"}},
 "cmyk": {"type": "array", "minItems": 4, "maxItems": "4",
 "items": {"sdfRef": "#/sdfData/cmykVal"}}
}

[JSO7V]

"enum": ["foo", "bar", "baz"]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 30

In a single definition, the keyword enum cannot be used at the same time as the keyword
sdfChoice, as the former is just syntactic sugar for the latter.

"sdfChoice": {
 "foo": { "const": "foo"},
 "bar": { "const": "bar"},
 "baz": { "const": "baz"}
}

5. Keywords for Definition Groups
The following SDF keywords are used to create definition groups in the target namespace. All
these definitions share some common qualities as discussed in Section 4.6.

5.1. sdfObject
The sdfObject keyword denotes a group of zero or more sdfObject definitions. sdfObject
definitions may contain or include definitions of named Properties, Actions, and Events declared
for the sdfObject, as well as named data types (sdfData group) to be used in this or other
sdfObjects.

The qualities of an sdfObject include the common qualities; additional qualities are shown in
Table 6. None of these qualities are required or have default values that are assumed if the
quality is absent.

Quality Type Description

(common) Section 4.6

sdfProperty property zero or more named property definitions for this sdfObject

sdfAction action zero or more named action definitions for this sdfObject

sdfEvent event zero or more named event definitions for this sdfObject

sdfData named-
sdq

zero or more named data type definitions that might be used in
the above

minItems number (array) minimum number of multiplied affordances in array

maxItems number (array) maximum number of multiplied affordances in array

Table 6: Qualities of sdfObject

5.2. sdfProperty
The sdfProperty keyword denotes a group of zero or more Property definitions.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 31

Properties are used to model elements of state.

The qualities of a Property definition include the data qualities (and thus the common qualities);
see Section 4.7. Additional qualities are shown in Table 7.

Quality Type Description Default

(data) Section 4.7

readable boolean Reads are allowed true

writable boolean Writes are allowed true

observable boolean Flag to indicate asynchronous notification is available true

Table 7: Qualities of sdfProperty

5.3. sdfAction
The sdfAction keyword denotes a group of zero or more Action definitions.

Actions are used to model commands and methods that are invoked. Actions may have
parameter data that is supplied upon invocation and output data that is provided as a direct
result of the invocation of the action (note that "action objects" may also be created to furnish
ongoing information during a long-running action; these would be pointed to by the output data).

The qualities of an Action definition include the common qualities. Additional qualities are
shown in Table 8. None of these qualities are required or have default values that are assumed if
the quality is absent.

sdfInputData defines the input data of the action. sdfOutputData defines the output data of the
action. As discussed in Section 2.2.3, a set of data qualities with type "object" can be used to
substructure either data item, with optionality indicated by the data quality required.

Quality Type Description

(common) Section 4.6

sdfInputData map data qualities of the input data for an Action

sdfOutputData map data qualities of the output data for an Action

sdfData named-
sdq

zero or more named data type definitions that might be used
in the above

Table 8: Qualities of sdfAction

5.4. sdfEvent
The sdfEvent keyword denotes zero or more Event definitions.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 32

Events are used to model asynchronous occurrences that may be communicated proactively.
Events have data elements that are communicated upon the occurrence of the event.

The qualities of sdfEvent include the common qualities. Additional qualities are shown in Table
9. None of these qualities are required or have default values that are assumed if the quality is
absent.

sdfOutputData defines the output data of the action. As discussed in Section 2.2.4, a set of data
qualities with type "object" can be used to substructure the output data item, with optionality
indicated by the data quality required.

Quality Type Description

(common) Section 4.6

sdfOutputData map data qualities of the output data for an Event

sdfData named-
sdq

zero or more named data type definitions that might be used
in the above

Table 9: Qualities of sdfEvent

5.5. sdfData
The sdfData keyword denotes a group of zero or more named data type definitions (named-sdq).

An sdfData definition provides a reusable semantic identifier for a type of data item and
describes the constraints on the defined type. sdfData is not itself a declaration, so it does not
cause any of these data items to be included in an affordance definition.

The qualities of sdfData include the data qualities (and thus the common qualities); see Section
4.7.

6. High-Level Composition
The requirements for high-level composition include the following:

The ability to represent products, standardized product types, and modular products while
maintaining the atomicity of sdfObjects.
The ability to compose a reusable definition block from sdfObjects. Example: a single plug
unit of an outlet strip with sdfObjects for on/off control, energy monitor, and optional
dimmer, while retaining the atomicity of the individual sdfObjects.
The ability to compose sdfObjects and other definition blocks into a higher level sdfThing
that represents a product, while retaining the atomicity of sdfObjects.
The ability to enrich and refine a base definition to have product-specific qualities and
quality values, such as unit, range, and scale settings.

•

•

•

•

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 33

The ability to reference items in one part of a complex definition from another part of the
same definition. Example: summarizing the energy readings from all plugs in an outlet strip.

•

6.1. Paths in the Model Namespaces
The model namespace is organized according to terms that are defined in the SDF documents
that contribute to the namespace. For example, definitions that originate from an organization
or vendor are expected to be in a namespace that is specific to that organization or vendor.

The structure of a path in a namespace is defined by the JSON Pointers to the definitions in the
SDF documents in that namespace. For example, if there is an SDF document defining an
sdfObject "Switch" with an action "on", then the reference to the action would be "ns:#/
sdfObject/Switch/sdfAction/on", where ns is the namespace prefix (short name for the
namespace).

6.2. Modular Composition
Modular composition of definitions enables an existing definition (which could be in the same or
another SDF document) to become part of a new definition by including a reference to the
existing definition within the model namespace.

6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition

An existing definition may be used as a template for a new definition, that is, a new definition is
created in the target namespace that uses the defined qualities of some existing definition. This
pattern uses the keyword sdfRef as a quality of a new definition with a value consisting of a
reference to the existing definition that is to be used as a template.

In the definition that uses sdfRef, new qualities may be added and existing qualities from the
referenced definition may be overridden. (Note that JSON maps do not have a defined order, so
the SDF processor may see these overrides before seeing the sdfRef.)

Note that the definition referenced by sdfRef might contain qualities or definitions that are not
valid in the context where the sdfRef is used. In this case, the resulting model, when resolved,
may be invalid. Example: an sdfRef adds an sdfThing definition in an sdfObject definition.

As a convention, overrides are intended to be used only for further restricting the allowable set
of data values. Such a usage is shown in Figure 5: any value allowable for a cable-length is also
an allowable value for a length, with the additional restriction that the length cannot be smaller
than 5 cm. (This is labeled as a convention as it cannot be checked in the general case. A quality
of implementation consideration for a tool might be to provide at least some form of checking.)
Note that the example provides a description that overrides the description of the referenced
definition; as this quality is intended for human consumption, there is no conflict with the
intended goal.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 34

Figure 5: Using an Override to Further Restrict the Set of Data Values

"sdfData":
 "length" : {
 "type": "number",
 "minimum": 0,
 "unit": "m"
 "description": "There can be no negative lengths."
 }
...
 "cable-length" : {
 "sdfRef": "#/sdfData/length"
 "minimum": 5e-2,
 "description": "Cables must be at least 5 cm."
 }

6.3. sdfThing
An sdfThing is a set of declarations and qualities that may be part of a more complex model. For
example, the sdfObject declarations that make up the definition of a single socket of an outlet
strip could be encapsulated in an sdfThing, which itself could be used in a declaration in the
sdfThing definition for the outlet strip. (See Figure 7 in Appendix D.1 for parts of an SDF model
for this example.)

sdfThing definitions carry semantic meaning, such as a defined refrigerator compartment and a
defined freezer compartment, making up a combination refrigerator-freezer product. An
sdfThing may be composed of sdfObjects and other sdfThings. It can also contain sdfData
definitions, as well as declarations of interaction affordances itself, such as a status (on/off) for
the refrigerator-freezer as a whole (see Figure 8 in Appendix D.2 for an example SDF model
illustrating these aspects).

The qualities of sdfThing are shown in Table 10. None of these qualities are required or have
default values that are assumed if the quality is absent. Analogous to sdfObject, the presence of
one or both of the optional qualities "minItems" and "maxItems" defines the sdfThing as an array.

Quality Type Description

(common) Section 4.6

sdfThing thing

sdfObject object

sdfProperty property zero or more named property definitions for this thing

sdfAction action zero or more named action definitions for this thing

sdfEvent event zero or more named event definitions for this thing

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 35

Quality Type Description

sdfData named-
sdq

zero or more named data type definitions that might be used in
the above

minItems number (array) minimum number of multiplied affordances in array

maxItems number (array) maximum number of multiplied affordances in array

Table 10: Qualities of sdfThing

7. IANA Considerations

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):
File extension(s):
Windows Clipboard Name:

7.1. Media Type
IANA has added the following Media-Type to the "Media Types" registry .

application

sdf+json

N/A

N/A

binary (JSON is UTF-8-encoded text)

Section 8 of RFC 9880

none

Section 7.1 of RFC 9880

Tools for data and interaction modeling in the Internet
of Things and related environments.

A JSON Pointer fragment identifier may be used as defined
in .

n/a
.sdf.json

"Semantic Definition Format (SDF) for Data and Interactions of
Things"

[IANA.media-types]

Name Template Reference

sdf+json application/sdf+json RFC 9880, Section 7.1

Table 11: Media Type Registration for SDF

Section 6 of [RFC6901]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 36

https://rfc-editor.org/rfc/rfc6901#section-6

Macintosh file type code(s):
Macintosh Universal Type Identifier code:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Provisional registration:

n/a
org.ietf.sdf-json conforms to public.text

ASDF WG mailing list
(asdf@ietf.org) or IETF Applications and Real-Time Area (art@ietf.org)

COMMON

none

IETF

no

7.2. Content-Format
IANA has added the following Content-Format to the "CoAP Content-Formats" registry within the
"Constrained RESTful Environments (CoRE) Parameters" registry group .[IANA.core-parameters]

Content Type Content Coding ID Reference

application/sdf+json - 434 RFC 9880

Table 12: SDF Content-Format Registration

Registry name:

Specification:

Repository:

Index value:

7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)
IANA has registered the following value in the "IETF URN Sub-namespace for Registered
Protocol Parameter Identifiers" registry in , following the template in :

unit

RFC 9880

Combining the symbol values from the "SenML Units" registry and the "Secondary
Units" registry in the "Sensor Measurement Lists (SenML)" registry group as
specified by Sections 4.5.2 and 12.1 of and , respectively
(which, by the registration policy, are guaranteed to be non-overlapping).

Percent-encoding (Section 2.1 of RFC 3986) is required of any characters
in unit names except for the set "unreserved" (Section 2.3 of RFC 3986), the set "sub-
delims" (Section 2.2 of RFC 3986), and ":" or "@" (i.e., the result must match the ABNF
rule "pchar" in Section 3.3 of RFC 3986).

[IANA.params] [BCP73]

[IANA.senml]
[RFC8428] Section 3 of [RFC8798]

[STD66]
[STD66]

[STD66]
[STD66]

7.4. SenML Registry Group
IANA has added the following note to the "Sensor Measurement Lists (SenML)" registry group

:[IANA.senml]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 37

https://rfc-editor.org/rfc/rfc8428#section-4.5.2
https://rfc-editor.org/rfc/rfc8428#section-12.1
https://rfc-editor.org/rfc/rfc8798#section-3
https://rfc-editor.org/rfc/rfc3986#section-2.1
https://rfc-editor.org/rfc/rfc3986#section-2.3
https://rfc-editor.org/rfc/rfc3986#section-2.2
https://rfc-editor.org/rfc/rfc3986#section-3.3

In SDF [RFC9880], a URI unit name is distinguished from a registered unit name by the
presence of a colon; any registered unit name that contains a colon can therefore not be
directly used in SDF.

7.5. Registries
IANA has created the "Semantic Definition Format (SDF)" registry group with the registries
defined in this Section.

Name:

Brief Description:

Reference:

Change Controller:

7.5.1. SDF Quality Names

IANA has created the "SDF Quality Names" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

A Quality Name composed of ASCII letters, digits, and dollar signs, starting with a
lowercase ASCII letter or a dollar sign (i.e., using a pattern of "[a-z$][A-Za-z$0-9]*").

A brief description.

A pointer to a specification.

(See Section 2.3 of RFC 8126)

Quality Names in this registry are intended to be registered in conjunction with RFCs and
activities of the IETF.

The registration policy is Specification Required as per Section 4.6 of RFC 8126 . Note that
the policy is not "RFC Required" or "IETF Review" (Sections 4.7 and 4.8 of RFC 8126) so
that registrations can be made earlier in the process, even earlier than foreseen in .)

The instructions to the Experts are:

to ascertain that the specification is available in an immutable reference and has achieved a
good level of review in conjunction with RFCs or activities of the IETF, and
to be frugal in the allocation of Quality Names that are suggestive of generally applicable
semantics, keeping them in reserve for qualities that are likely to enjoy wide use and can
make good use of their conciseness.

The "SDF Quality Names" registry starts out as in Table 13; all references for these initial entries
are to RFC 9880 (this document) and all change controllers are "IETF".

[BCP26]

[BCP26]
[BCP26]
[BCP100]

•

•

Name Brief Description

$comment source code comments only, no semantics

const constant value

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 38

https://rfc-editor.org/rfc/rfc8126#section-2.3
https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-4.7
https://rfc-editor.org/rfc/rfc8126#section-4.8

Name Brief Description

contentFormat content format

default default value

description long description text

enum sdfChoice limited to text strings

exclusiveMaximum exclusive maximum for a number

exclusiveMinimum exclusive minimum for a number

format specific format for a text string

items items of an array

label short text (no constraints); defaults to key

maxItems maximum number of items in an array

maxLength maximum length for a text string (in characters, i.e., Unicode scalar
values)

maximum maximum for a number

minItems minimum number of items in an array

minLength minimum length for a text string (in characters, i.e., Unicode scalar
values)

minimum minimum for a number

multipleOf step size of number

nullable boolean: can the item be left out?

observable boolean: can the item be observed?

pattern regular expression pattern for a text string

properties named dataqualities for type="object"

readable boolean: can the item be read?

required which data items are required?

sdfChoice named dataqualities for a choice

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 39

Name Brief Description

sdfData named dataqualities for an independent data type definition

sdfInputData input data to an action

sdfOutputData output data of an action or event (sdfRequired applies here)

sdfRef sdf-pointer to definition being referenced

sdfRequired pointer-list to declarations of required components

sdfRequiredInputData pointer-list to declarations of required input data for an action

sdfType more detailed information about the type of a string

type general category of data type

uniqueItems boolean: do the items of the array need to be all different?

unit engineering unit and scale (per SenML registry)

writable boolean: can the item be written to?

Table 13: Initial Content of the SDF Quality Names Registry

Prefix:

Contact:

Reference:

7.5.2. SDF Quality Name Prefixes

IANA has created the "SDF Quality Name Prefixes" registry in the "Semantic Definition Format
(SDF)" registry group with the following template:

A Quality Name prefix composed of lowercase ASCII letters and digits, starting with a
lowercase ASCII letter (i.e., using a pattern of "[a-z][a-z0-9]*").

A contact point for the organization that assigns Quality Names with this prefix.

A pointer to additional information, if available.

Quality Name Prefixes are intended to be registered by organizations that plan to define Quality
Names constructed with an organization-specific prefix (Section 2.3.3).

The registration policy is Expert Review as per Section 4.5 of RFC 8126 . The instructions
to the Expert are to ascertain that the organization will handle Quality Names constructed using
their prefix in a way that roughly achieves the objectives for an IANA registry that supports
interoperability of SDF models employing these Quality Names, including:

Stability, "stable and permanent";
Transparency, "readily available" and "in sufficient detail" (Section 4.6 of RFC 8126).

The "SDF Quality Name Prefixes" registry is empty at this time.

[BCP26]

•
• [BCP26]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 40

https://rfc-editor.org/rfc/rfc8126#section-4.5
https://rfc-editor.org/rfc/rfc8126#section-4.6

Name:

Description:

type:

JSON Representation:

Reference:

7.5.3. sdfType Values

IANA has created the "sdfType Values" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

A name composed of lowercase ASCII letters, digits and - (ASCII hyphen/minus)
characters, starting with a lowercase ASCII letter (i.e., using a pattern of "[a-z][-a-z0-9]*").

A short description of the information model level structure and semantics.

The value of the quality "type" to be used with this sdfType.

A short description of a JSON representation that can be used for this
sdfType. As per Section 4.7.1, this be consistent with the type.

A more detailed specification of meaning and use of sdfType.

sdfType values are intended to be registered to enable modeling additional SDF-specific types
(see Section 4.7.1).

The registration policy is Specification Required as per Section 4.6 of RFC 8126 . The
instructions to the Expert are to ascertain that the specification provides enough detail to enable
interoperability between implementations of the sdfType being registered, and that names are
chosen with enough specificity that ecosystem-specific sdfTypes will not be confused with more
generally applicable ones.

The initial set of registrations is described in Table 5.

MUST

[BCP26]

Name:

Brief Description:

Reference:

Change Controller:

7.5.4. SDF Feature Names

IANA has created the "SDF Feature Names" registry in the "Semantic Definition Format (SDF)"
registry group with the following template:

A feature name composed of ASCII letters, digits, and dollar signs, starting with a
lowercase ASCII letter or a dollar sign (i.e., using a pattern of "[a-z$][A-Za-z$0-9]*").

A brief description.

A pointer to a specification.

(See Section 2.3 of RFC 8126)

The registration policy is Specification Required as per Section 4.6 of RFC 8126 .

The instructions to the Experts are:

to ascertain that the specification is available in an immutable reference and has achieved a
good level of review, and

[BCP26]

[BCP26]

•

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 41

https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc8126#section-2.3
https://rfc-editor.org/rfc/rfc8126#section-4.6

to be frugal in the allocation of feature names that are suggestive of generally applicable
semantics, keeping them in reserve for features that are likely to enjoy wide use and can
make good use of their conciseness.

The "SDF Feature Names" registry is empty at this time.

•

8. Security Considerations
Some wider security considerations applicable to Things are discussed in .

 gives an overview over security considerations that arise when formal
description techniques are used to govern interoperability; analogs of these security
considerations can apply to SDF.

The security considerations of underlying building blocks such as those detailed in Section 10 of
RFC 3629 apply.

SDF uses JSON as a representation language. For a number of cases, indicates that
implementation behavior for certain constructs allowed by the JSON grammar is unpredictable.

Implementations need to be robust against invalid or unpredictable cases on input, preferably
by rejecting input that is invalid or that would lead to unpredictable behavior, and avoid
generating these cases on output.

Implementations of model languages may also exhibit performance-related availability issues
when the attacker can control the input, see for a brief discussion and

 for considerations specific to the use of pattern.

SDF may be used in two processes that are often security relevant: (1) model-based validation of
data that is intended to be described by SDF models, and (2) model-based augmentation of these
data with information obtained from the SDF models that apply.

Implementations need to ascertain the provenance (and thus authenticity and integrity) and
applicability of the SDF models they employ operationally in such security-relevant ways.
Implementations that make use of the composition mechanisms defined in this document need
to do this for each of the components they combine into the SDF models they employ. Essentially,
this process needs to undergo the same care and scrutiny as any other introduction of source
code into a build environment; the possibility of supply-chain attacks on the modules imported
needs to be considered.

Specifically, implementations might rely on model-based input validation for enforcing certain
characteristics of the data structure ingested (which, if not validated, could lead to malfunctions
such as crashes and remote code execution). These implementations need to be particularly
careful about the data models they apply, including their provenance and potential changes of
these characteristics that upgrades to the referenced modules may (inadvertently or as part of
an attack) cause. More generally speaking, implementations should strive to be robust against
expected and unexpected limitations of the model-based input validation mechanisms and their
implementations.

[RFC8576]

Section 5 of [RFC8610]

[STD63]

[STD90]

Section 4.1 of [RFC9535]
Section 8 of [RFC9485]

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 42

https://rfc-editor.org/rfc/rfc8610#section-5
https://rfc-editor.org/rfc/rfc3629#section-10
https://rfc-editor.org/rfc/rfc9535#section-4.1
https://rfc-editor.org/rfc/rfc9485#section-8

Similarly, implementations that rely on model-based augmentation may generate false data
from their inputs; this is an integrity violation in any case, but also can possibly be exploited for
further attacks.

In applications that dynamically acquire models and obtain modules from module references in
these models, the security considerations of dereferenceable identifiers apply (see

 for a more extensive discussion of dereferenceable identifiers).

There may be confidentiality requirements on SDF models, both on their content and on the fact
that a specific model is used in a particular Thing or environment. The present specification
does not discuss model discovery or define an access control model for SDF models, nor does it
define a way to obtain selective disclosure where that may be required. It is likely that these
definitions require additional context from underlying ecosystems and the characteristics of the
protocols employed there; therefore, this is left as future work (e.g., for documents such as

).

[DEREF-ID-
PATTERN]

[SDF-
MAPPING]

9. References

[BCP26]

[BCP73]

[IANA.core-parameters]

[IANA.media-types]

[IANA.params]

[IANA.senml]

[RFC2119]

9.1. Normative References

, ,
.

, , .

, ,
.

, ,
.

, , ,
, , March 1997,
.

Best Current Practice 26, .<https://www.rfc-editor.org/info/bcp26>
At the time of writing, this BCP comprises the following:

, , and ,
, , , , June

2017, .

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Best Current Practice 73, .<https://www.rfc-editor.org/info/bcp73>
At the time of writing, this BCP comprises the following:

, , , and ,
, , ,

, June 2003, .

Mealling, M. Masinter, L. Hardie, T. G. Klyne "An IETF URN Sub-
namespace for Registered Protocol Parameters" BCP 73 RFC 3553 DOI 10.17487/
RFC3553 <https://www.rfc-editor.org/info/rfc3553>

IANA "Constrained RESTful Environments (CoRE) Parameters"
<https://www.iana.org/assignments/core-parameters>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

IANA "Uniform Resource Name (URN) Namespace for IETF Use" <https://
www.iana.org/assignments/params>

IANA "Sensor Measurement Lists (SenML)" <https://www.iana.org/assignments/
senml>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 43

https://www.rfc-editor.org/info/bcp26
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/bcp73
https://www.rfc-editor.org/info/rfc3553
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/params
https://www.iana.org/assignments/params
https://www.iana.org/assignments/senml
https://www.iana.org/assignments/senml
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC3339]

[RFC6901]

[RFC7396]

[RFC8174]

[RFC8428]

[RFC8610]

[RFC8798]

[RFC9165]

[RFC9193]

[RFC9562]

[SPDX]

[STD63]

 and , ,
, , July 2002,

.

, , and ,
, , , April 2013,

.

 and , , , ,
October 2014, .

, ,
, , , May 2017,

.

, , , , and ,
, , , August 2018,

.

, , and ,

, ,
, June 2019, .

, ,
, , June 2020,

.

,
, , , December 2021,

.

 and ,
, , , June

2022, .

, , and , ,
, , May 2024,
.

, .

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Bryan, P., Ed. Zyp, K. M. Nottingham, Ed. "JavaScript Object Notation
(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-
editor.org/info/rfc6901>

Hoffman, P. J. Snell "JSON Merge Patch" RFC 7396 DOI 10.17487/RFC7396
<https://www.rfc-editor.org/info/rfc7396>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jennings, C. Shelby, Z. Arkko, J. Keranen, A. C. Bormann "Sensor
Measurement Lists (SenML)" RFC 8428 DOI 10.17487/RFC8428
<https://www.rfc-editor.org/info/rfc8428>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Bormann, C. "Additional Units for Sensor Measurement Lists (SenML)" RFC
8798 DOI 10.17487/RFC8798 <https://www.rfc-editor.org/info/
rfc8798>

Bormann, C. "Additional Control Operators for the Concise Data Definition
Language (CDDL)" RFC 9165 DOI 10.17487/RFC9165 <https://
www.rfc-editor.org/info/rfc9165>

Keränen, A. C. Bormann "Sensor Measurement Lists (SenML) Fields for
Indicating Data Value Content-Format" RFC 9193 DOI 10.17487/RFC9193

<https://www.rfc-editor.org/info/rfc9193>

Davis, K. Peabody, B. P. Leach "Universally Unique IDentifiers (UUIDs)"
RFC 9562 DOI 10.17487/RFC9562 <https://www.rfc-editor.org/info/
rfc9562>

"SPDX License List" <https://spdx.org/licenses/>

Internet Standard 63, .<https://www.rfc-editor.org/info/std63>
At the time of writing, this STD comprises the following:

, , , ,
, November 2003,

.

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 44

https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc7396
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8428
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8798
https://www.rfc-editor.org/info/rfc8798
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9165
https://www.rfc-editor.org/info/rfc9193
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://spdx.org/licenses/
https://www.rfc-editor.org/info/std63
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629

[STD66]

[STD80]

[STD90]

[STD94]

[W3C.NOTE-curie-20101216] and , ,
, 16 December 2010,

.

Internet Standard 66, .<https://www.rfc-editor.org/info/std66>
At the time of writing, this STD comprises the following:

, , and ,
, , , , January 2005,

.

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Internet Standard 80, .<https://www.rfc-editor.org/info/std80>
At the time of writing, this STD comprises the following:

, , , ,
, October 1969, .

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Internet Standard 90, .<https://www.rfc-editor.org/info/std90>
At the time of writing, this STD comprises the following:

, ,
, , , December 2017,

.

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Internet Standard 94, .<https://www.rfc-editor.org/info/std94>
At the time of writing, this STD comprises the following:

 and , ,
, , , December 2020,

.

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Birbeck, M., Ed. S. McCarron, Ed. "CURIE Syntax 1.0" W3C
Working Group Note <https://www.w3.org/TR/2010/NOTE-
curie-20101216/>

[BCP100]

[CamelCase]

[DEREF-ID-PATTERN]

9.2. Informative References

, December 2014, .

 and , ,
, , 30 August

2025, .

Best Current Practice 100, .<https://www.rfc-editor.org/info/bcp100>
At the time of writing, this BCP comprises the following:

, , ,
, , January 2014,

.

Cotton, M. "Early IANA Allocation of Standards Track Code Points" BCP 100 RFC
7120 DOI 10.17487/RFC7120 <https://www.rfc-editor.org/info/
rfc7120>

"Camel Case" <http://wiki.c2.com/?CamelCase>

Bormann, C. C. Amsüss "The "dereferenceable identifier" pattern"
Work in Progress Internet-Draft, draft-bormann-t2trg-deref-id-06

<https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-06>

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 45

https://www.rfc-editor.org/info/std66
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/std80
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.rfc-editor.org/info/bcp100
https://www.rfc-editor.org/info/rfc7120
https://www.rfc-editor.org/info/rfc7120
http://wiki.c2.com/?CamelCase
https://datatracker.ietf.org/doc/html/draft-bormann-t2trg-deref-id-06

[ECMA-262]

[JSO4]

[JSO4V]

[JSO7]

[JSO7V]

[KebabCase]

[OCF]

[OMA]

[REST-IOT]

[RFC8576]

[RFC9485]

[RFC9535]

, , ,
, June 2025,

.

, , and ,
, , , 31

January 2013, .

 and , ,
, , 31

January 2013,
.

, , , and ,
, ,

, 17 September 2019,
.

, , and ,
, ,

, 17 September 2019,
.

, August 2014, .

, , ,
November 2023,

.

, ,
.

, , and ,
, ,

, 20 October 2025,
.

, , and ,
, , , April 2019,

.

 and ,
, , , October 2023,

.

, , and ,
, , , February 2024,

.

Ecma International "ECMAScript 2025 Language Specification" 16th Edition
ECMA Standard ECMA-262 <https://ecma-international.org/wp-
content/uploads/ECMA-262_16th_edition_june_2025.pdf>

Galiegue, F., Ed. Zyp, K., Ed. G. Court "JSON Schema: core definitions and
terminology" Work in Progress Internet-Draft, draft-zyp-json-schema-04

<https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04>

Zyp, K. G. Court "JSON Schema: interactive and non interactive validation"
Work in Progress Internet-Draft, draft-fge-json-schema-validation-00

<https://datatracker.ietf.org/doc/html/draft-fge-json-schema-
validation-00>

Wright, A., Ed. Andrews, H., Ed. Hutton, B., Ed. G. Dennis "JSON Schema:
A Media Type for Describing JSON Documents" Work in Progress Internet-
Draft, draft-handrews-json-schema-02 <https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-02>

Wright, A., Ed. Andrews, H., Ed. B. Hutton, Ed. "JSON Schema Validation: A
Vocabulary for Structural Validation of JSON" Work in Progress Internet-Draft,
draft-handrews-json-schema-validation-02 <https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02>

"Kebab Case" <http://wiki.c2.com/?KebabCase>

Open Connectivity Foundation "OCF Resource Type Specification" Version 2.2.7
<https://openconnectivity.org/specs/

OCF_Resource_Type_Specification.pdf>

Open Mobile Alliance "LwM2M OBJECTS" <https://
www.openmobilealliance.org/specifications/registries/objects>

Keränen, A. Kovatsch, M. K. Hartke "Guidance on RESTful Design for
Internet of Things Systems" Work in Progress Internet-Draft, draft-irtf-t2trg-
rest-iot-17 <https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-
rest-iot-17>

Garcia-Morchon, O. Kumar, S. M. Sethi "Internet of Things (IoT) Security:
State of the Art and Challenges" RFC 8576 DOI 10.17487/RFC8576
<https://www.rfc-editor.org/info/rfc8576>

Bormann, C. T. Bray "I-Regexp: An Interoperable Regular Expression
Format" RFC 9485 DOI 10.17487/RFC9485 <https://www.rfc-
editor.org/info/rfc9485>

Gössner, S., Ed. Normington, G., Ed. C. Bormann, Ed. "JSONPath: Query
Expressions for JSON" RFC 9535 DOI 10.17487/RFC9535 <https://
www.rfc-editor.org/info/rfc9535>

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 46

https://ecma-international.org/wp-content/uploads/ECMA-262_16th_edition_june_2025.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_16th_edition_june_2025.pdf
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
http://wiki.c2.com/?KebabCase
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification.pdf
https://www.openmobilealliance.org/specifications/registries/objects
https://www.openmobilealliance.org/specifications/registries/objects
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-17
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-17
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/rfc9485
https://www.rfc-editor.org/info/rfc9535
https://www.rfc-editor.org/info/rfc9535

[SDF-MAPPING]

[SDFTYPE-LINK]

[STD97]

[WoT]

[ZCL]

 and ,
, , , 18

December 2025,
.

 and , , ,
, 19 December 2025,

.

, , and ,
, , 5 December 2023,

.

,
, , , 2008,

.

Bormann, C. J. Romann "Semantic Definition Format (SDF): Mapping
files" Work in Progress Internet-Draft, draft-ietf-asdf-sdf-mapping-00

<https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-
mapping-00>

Bormann, C. A. Keränen "An sdfType for Links" Work in Progress
Internet-Draft, draft-ietf-asdf-sdftype-link-01 <https://
datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01>

Internet Standard 97, .<https://www.rfc-editor.org/info/std97>
At the time of writing, this STD comprises the following:

, , and , ,
, , , June 2022,

.

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Kaebisch, S., Ed. McCool, M., Ed. E. Korkan, Ed. "Web of Things (WoT)
Thing Description 1.1" W3C Recommendation <https://
www.w3.org/TR/2023/REC-wot-thing-description11-20231205/>

"Chapter 6 - The ZigBee Cluster Library" Zigbee Wireless Networking, pp.
239-271 DOI 10.1016/b978-0-7506-8597-9.00006-9 ISBN 9780750685979
<https://doi.org/10.1016/b978-0-7506-8597-9.00006-9>

Appendix A. Formal Syntax of SDF
This normative appendix describes the syntax of SDF using CDDL .

This appendix shows the framework syntax only, i.e., a syntax with liberal extension points.
Since this syntax is nearly useless in finding typos in an SDF specification, a second syntax, the
validation syntax, is defined that does not include the extension points. The validation syntax
can be generated from the framework syntax by leaving out all lines containing the string
EXTENSION-POINT; as this is trivial, the result is not shown here.

This appendix makes use of CDDL "features" as defined in . Features
whose names end in "-ext" indicate extension points for further evolution.

[RFC8610]

Section 4 of [RFC9165]

start = sdf-syntax

sdf-syntax = {
 ; info will be required in most process policies
 ? info: sdfinfo
 ? namespace: named<text>
 ? defaultNamespace: text
 ; Thing is a composition of objects that work together in some way
 ? sdfThing: named<thingqualities>
 ; Object is a set of Properties, Actions, and Events that together
 ; perform a particular function
 ? sdfObject: named<objectqualities>

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 47

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdftype-link-01
https://www.rfc-editor.org/info/std97
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.w3.org/TR/2023/REC-wot-thing-description11-20231205/
https://www.w3.org/TR/2023/REC-wot-thing-description11-20231205/
https://doi.org/10.1016/b978-0-7506-8597-9.00006-9
https://rfc-editor.org/rfc/rfc9165#section-4

 ; Includes Properties, Actions, and Events as well as sdfData
 paedataqualities
 * $$SDF-EXTENSION-TOP
 EXTENSION-POINT<"top-ext">
}

sdfinfo = {
 ? title: text
 ? description: text
 ? version: text
 ? copyright: text
 ? license: text
 ? modified: modified-date-time
 ? features: [
 * (any .feature "feature-name") ; EXTENSION-POINT
]
 optional-comment
 * $$SDF-EXTENSION-INFO
 EXTENSION-POINT<"info-ext">
}

; Shortcut for a map that gives names to instances of X
; (has keys of type text and values of type X)
named<X> = { * text => X }

; EXTENSION-POINT is only used in framework syntax
EXTENSION-POINT<f> = (* (quality-name .feature f) => any)
quality-name = text .regexp "([a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*"

sdf-pointer = global / same-object / true
global = text .regexp ".*[:#].*" ; rough CURIE or JSON Pointer syntax
same-object = referenceable-name
referenceable-name = text .regexp "[^:#]*"

; per se no point in having an empty list, but used for sdfRequired
; in odmobject-multiple_axis_joystick.sdf.json
pointer-list = [* sdf-pointer]

optional-comment = (
 ? $comment: text ; source code comments only, no semantics
)

commonqualities = (
 ? description: text ; long text (no constraints)
 ? label: text ; short text (no constraints); default to key
 optional-comment
 ? sdfRef: sdf-pointer
 ; applies to qualities of properties, of data:
 ? sdfRequired: pointer-list
)

arraydefinitionqualities = (
 ? "minItems" => uint
 ? "maxItems" => uint
)

paedataqualities = (
 ; Property represents the state of an instance of an object

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 48

 ? sdfProperty: named<propertyqualities>
 ; Action invokes an application layer verb associated with an object
 ? sdfAction: named<actionqualities>
 ; Event represents an occurrence of event associated with an object
 ? sdfEvent: named<eventqualities>
 ; Data represents a piece of information that can be the state of a
 ; property or a parameter to an action or a signal in an event
 ? sdfData: named<dataqualities>

)

; for building hierarchy
thingqualities = {
 commonqualities
 ? sdfObject: named<objectqualities>
 ? sdfThing: named<thingqualities>
 paedataqualities
 arraydefinitionqualities
 * $$SDF-EXTENSION-THING
 EXTENSION-POINT<"thing-ext">
}

; for single objects, or for arrays of objects
objectqualities = {
 commonqualities
 paedataqualities
 arraydefinitionqualities
 * $$SDF-EXTENSION-OBJECT
 EXTENSION-POINT<"object-ext">
}

parameter-list = dataqualities

actionqualities = {
 commonqualities
 ? sdfInputData: parameter-list ; sdfRequiredInputData applies here
 ? sdfOutputData: parameter-list ; sdfRequired applies here
 ; zero or more named data type definitions that might be used above
 ? sdfData: named<dataqualities>
 * $$SDF-EXTENSION-ACTION
 EXTENSION-POINT<"action-ext">
}

eventqualities = {
 commonqualities
 ? sdfOutputData: parameter-list ; sdfRequired applies here
 ; zero or more named data type definitions that might be used above
 ? sdfData: named<dataqualities>
 * $$SDF-EXTENSION-EVENT
 EXTENSION-POINT<"event-ext">
}

sdftype-name = text .regexp "[a-z][-a-z0-9]*" ; EXTENSION-POINT

dataqualities = {
 commonqualities
 jsonschema
 ? "unit" => text

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 49

 ? nullable: bool
 ? "sdfType" => "byte-string" / "unix-time"
 / $SDF-EXTENSION-SDFTYPE .within sdftype-name
 / (sdftype-name .feature "sdftype-ext") ; EXTENSION-POINT
 ? contentFormat: text
 * $$SDF-EXTENSION-DATA
 EXTENSION-POINT<"data-ext">
}

propertyqualities = {
 ? observable: bool
 ? readable: bool
 ? writable: bool
 * $$SDF-EXTENSION-PROPERTY
 ~dataqualities
}

allowed-types = number / text / bool / null
 / [* number] / [* text] / [* bool]
 / {* text => any}
 / $SDF-EXTENSION-ALLOWED
 / (any .feature "allowed-ext") ; EXTENSION-POINT

compound-type = (
 "type" => "object"
 ? required: [+text]
 ? properties: named<dataqualities>
)

optional-choice = (
 ? (("sdfChoice" => named<dataqualities>)
 // ("enum" => [+ text])) ; limited to text strings
)

jsonschema = (
 ? (("type" => "number" / "string" / "boolean" / "integer" / "array")
 // compound-type
 // $$SDF-EXTENSION-TYPE
 // (type: text .feature "type-ext") ; EXTENSION-POINT
)
 ; if present, all other qualities apply to all choices:
 optional-choice
 ; the next three should validate against type:
 ? const: allowed-types
 ? default: allowed-types
 ; number/integer constraints
 ? minimum: number
 ? maximum: number
 ? exclusiveMinimum: number
 ? exclusiveMaximum: number
 ? multipleOf: number
 ; text string constraints
 ? minLength: uint
 ? maxLength: uint
 ? pattern: text ; regexp
 ? format: "date-time" / "date" / "time"
 / "uri" / "uri-reference" / "uuid"
 / $SDF-EXTENSION-FORMAT .within text

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 50

 / (text .feature "format-ext") ; EXTENSION-POINT
 ; array constraints
 ? minItems: uint
 ? maxItems: uint
 ? uniqueItems: bool
 ? items: jso-items
)

jso-items = {
 ? sdfRef: sdf-pointer ; import limited to subset allowed here...
 ? description: text ; long text (no constraints)
 optional-comment
 ; leave commonqualities out for non-complex data types,
 ; but need the above three.
 ; no further nesting: no "array"
 ? ((type: "number" / "string" / "boolean" / "integer")
 // compound-type
 // $$SDF-EXTENSION-ITEMTYPE
 // (type: text .feature "itemtype-ext") ; EXTENSION-POINT
)
 ; if present, all other qualities apply to all choices
 optional-choice
 ; jso subset
 ? minimum: number
 ? maximum: number
 ? format: text
 ? minLength: uint
 ? maxLength: uint
 * $$SDF-EXTENSION-ITEMS
 EXTENSION-POINT<"items-ext">
 }

modified-date-time = text .abnf modified-dt-abnf
modified-dt-abnf = "modified-dt" .det rfc3339z

; RFC 3339 sans time-numoffset, slightly condensed
rfc3339z = '
 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on
 ; month/year
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap sec
 ; rules
 time-secfrac = "." 1*DIGIT
 DIGIT = %x30-39 ; 0-9

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday

 modified-dt = full-date ["T" partial-time "Z"]
'

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 51

Appendix B. json-schema.org Rendition of SDF Syntax
This informative appendix describes the syntax of SDF defined in Appendix A, but uses a version
of the description techniques advertised on json-schema.org .

The appendix shows both the validation and the framework syntax. Since most of the lines are
the same between these two files, those lines are shown only once, with a leading space, in the
form of a unified diff. Lines leading with a - are part of the validation syntax and lines leading
with a + are part of the framework syntax.

[JSO7] [JSO7V]

 {
- "title": "sdf-validation.cddl -- Generated: 2025-10-13T08:43:18Z",
+ "title": "sdf-framework.cddl -- Generated: 2025-10-13T08:43:29Z",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$ref": "#/definitions/sdf-syntax",
 "definitions": {
 "sdf-syntax": {
 "type": "object",
 "properties": {
 "info": {
 "$ref": "#/definitions/sdfinfo"
 },
 "namespace": {
 "type": "object",
 "additionalProperties": {
 "type": "string"
 }
 },
 "defaultNamespace": {
 "type": "string"
 },
 "sdfThing": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/thingqualities"
 }
 },
 "sdfObject": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/objectqualities"
 }
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 52

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "sdfinfo": {
 "type": "object",
 "properties": {
 "title": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "version": {
 "type": "string"
 },
 "copyright": {
 "type": "string"
 },
 "license": {
 "type": "string"
 },
 "modified": {
 "$ref": "#/definitions/modified-date-time"
 },
 "features": {
- "type": "array",
- "maxItems": 0
+ "type": "array"
 },
 "$comment": {
 "type": "string"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "modified-date-time": {
 "type": "string"
 },
 "thingqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 53

 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfObject": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/objectqualities"
 }
 },
 "sdfThing": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/thingqualities"
 }
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "sdf-pointer": {
 "anyOf": [
 {
 "$ref": "#/definitions/global"
 },
 {
 "$ref": "#/definitions/same-object"
 },
 {
 "$ref": "#/definitions/true"
 }
]
 },
 "global": {
 "type": "string",
 "pattern": "^[^\\n\\r]*[:#][^\\n\\r]*$"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 54

 },
 "same-object": {
 "$ref": "#/definitions/referenceable-name"
 },
 "referenceable-name": {
 "type": "string",
 "pattern": "^[^:#]*$"
 },
 "true": {
 "type": "boolean",
 "const": true
 },
 "pointer-list": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/sdf-pointer"
 }
 },
 "objectqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 55

 "additionalProperties": false
 },
 "propertyqualities": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 56

 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 57

 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 58

 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "observable": {
+ "type": "boolean"
+ },
+ "readable": {
+ "type": "boolean"
+ },
+ "writable": {
+ "type": "boolean"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 59

+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 60

+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 61

 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 62

+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 63

 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 64

+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "observable": {
+ "type": "boolean"
+ },
+ "readable": {
+ "type": "boolean"
+ },
+ "writable": {
+ "type": "boolean"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 65

+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
 "dataqualities": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 66

 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 67

 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 68

 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 69

+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 70

+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 71

 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 72

 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 73

 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "description": {
+ "type": "string"
+ },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 74

+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 75

+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
 "allowed-types": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "string"
 },
 {
 "type": "boolean"
 },
 {
 "type": "null"
 },
 {
 "type": "array",
 "items": {
 "type": "number"
 }
 },
 {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 {
 "type": "array",
 "items": {
 "type": "boolean"
 }
 },
 {
 "type": "object",
 "additionalProperties": {}
- }
+ },
+ {}
]
 },
 "uint": {
 "type": "integer",

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 76

 "minimum": 0
 },
 "jso-items": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer"
]
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 77

 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "description": {
+ "type": "string"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 78

+ },
+ "$comment": {
+ "type": "string"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "format": {
+ "type": "string"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer"
]
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 79

 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 80

 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "description": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "format": {
+ "type": "string"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
+ "sdftype-name": {
+ "type": "string",
+ "pattern": "^[a-z][\\-a-z0-9]*$"
+ },

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 81

 "actionqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfInputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfOutputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "parameter-list": {
 "$ref": "#/definitions/dataqualities"
 },
 "eventqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfOutputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfData": {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 82

 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "format-": {
- "type": "string",
- "enum": [
- "date-time",
- "date",
- "time",
- "uri",
- "uri-reference",
- "uuid"
+ "anyOf": [
+ {
+ "type": "string",
+ "const": "date-time"
+ },
+ {
+ "type": "string",
+ "const": "date"
+ },
+ {
+ "type": "string",
+ "const": "time"
+ },
+ {
+ "type": "string",
+ "const": "uri"
+ },
+ {
+ "type": "string",
+ "const": "uri-reference"
+ },
+ {
+ "type": "string",
+ "const": "uuid"
+ },
+ {
+ "type": "string"
+ }
+]
+ },
+ "sdfType-": {
+ "anyOf": [
+ {
+ "type": "string",
+ "const": "byte-string"
+ },
+ {
+ "type": "string",
+ "const": "unix-time"
+ },
+ {

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 83

+ "$ref": "#/definitions/sdftype-name"
+ }
]
 },
 "sdfData-sdfChoice-properties-": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/dataqualities"
 }
 },
 "type-": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer",
 "array"
]
 },
- "sdfEvent-": {
+ "sdfProperty-": {
 "type": "object",
 "additionalProperties": {
- "$ref": "#/definitions/eventqualities"
+ "$ref": "#/definitions/propertyqualities"
 }
 },
 "sdfAction-": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/actionqualities"
 }
 },
- "sdfProperty-": {
+ "sdfEvent-": {
 "type": "object",
 "additionalProperties": {
- "$ref": "#/definitions/propertyqualities"
+ "$ref": "#/definitions/eventqualities"
 }
- },
- "sdfType-": {
- "type": "string",
- "enum": [
- "byte-string",
- "unix-time"
-]
 }
 }
 }

Appendix C. Data Qualities Inspired by json-schema.org
This appendix is normative.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 84

Data qualities define data used in SDF affordances at an information model level. A popular way
to describe JSON data at a data model level is proposed by a number of drafts on json-
schema.org (which collectively are abbreviated JSO here); for reference to a popular version,
this appendix points to and . As the vocabulary used by JSO is familiar to many
JSON modelers, the present specification borrows some of the terms and ports their semantics to
the information model level needed for SDF.

The main data quality imported is the "type". In SDF, this can take one of six (text string) values,
which are discussed in the following subsections (note that the JSO type "null" is not supported
as a value of this data quality in SDF).

The additional quality "const" restricts the data to one specific value (given as the value of the
const quality).

Similarly, the additional quality "default" provides data that can be used in the absence of the
data (given as the value of the default quality); this is mainly documentary and not very well-
defined for SDF as no process is defined that would add default values to an instance of some
interaction data.

Other qualities that are inspired by JSO are "$comment" and "description", both of which are
also available in the information block.

[JSO7] [JSO7V]

C.1. type "number", type "integer"
The types "number" and "integer" are associated with floating point and integer numbers, as
they are available in JSON. A type value of integer means that only integer values of JSON
numbers can be used (note that 10.0 is an integer value, even if it is in a notation that would
also allow non-zero decimal fractions).

The additional data qualities "minimum", "maximum", "exclusiveMinimum", and
"exclusiveMaximum" provide number values that serve as inclusive/exclusive lower/upper
bounds for the number. (Note that the Boolean form of
"exclusiveMinimum"/"exclusiveMaximum" found in earlier JSO drafts is not used.)

The data quality "multipleOf" gives a positive number that constrains the data value to be an
integer multiple of the number given. (Type "integer" can also be expressed as a "multipleOf"
quality of value 1, unless another "multipleOf" quality is present.)

[JSO4V]

C.2. type "string"
The type "string" is associated with Unicode text string values, as they can be represented in
JSON.

The length (as measured in characters, specifically Unicode scalar values) can be constrained by
the additional data qualities "minLength" and "maxLength", which are inclusive bounds.

(More specifically, Unicode text strings as defined in this specification are sequences of Unicode
scalar values, the number of which is taken as the length of such a text string.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 85

The data quality "pattern" takes a string value that is interpreted as an regular
expression in Unicode mode that constrains the string (note that these are not anchored by
default, so unless ^ and $ anchors are employed, ECMA-262 regular expressions match any
string that contains a match). The JSO proposals acknowledge that regular expression support is
rather diverse in various platforms, so the suggestion is to limit them to:

characters;
character classes in square brackets, including ranges; their complements;
simple quantifiers *, +, ?, and range quantifiers {n}, {n,m}, and {n,};
grouping parentheses;
the choice operator |;
and anchors (beginning-of-input ^ and end-of-input $).

Note that this subset is somewhat similar to the subset introduced by I-Regexps ,
which are anchored regular expressions and include certain backslash escapes for characters
and character classes.

The additional data quality "format" can take one of the following values. Note that, at an
information model level, the presence of this data quality changes the type from being a simple
text string to the abstract meaning of the format given (i.e., the format "date-time" is less about
the specific syntax employed in than about the usage as an absolute point in civil
time).

"date-time", "date", "time": A date-time, full-date, or full-time as defined in ,
respectively.
"uri", "uri-reference": A URI or URI Reference as defined in , respectively.
"uuid": A Universally Unique Identifier (UUID) as defined in).

[ECMA-262]

•
•
•
•
•
•

[RFC9485]

[RFC3339]

• [RFC3339]

• [STD66]
• [RFC9562]

C.3. type "boolean"
The type "boolean" can take the values "true" or "false".

C.4. type "array"
The type "array" is associated with arrays, as they are available in JSON.

The additional quality "items" gives the type that each of the elements of the array must match.

The number of elements in the array can be constrained by the additional data qualities
"minItems" and "maxItems", which are inclusive bounds.

The additional data quality "uniqueItems" gives a Boolean value that, if true, requires the
elements to be all different.

C.5. type "object"
The type "object" is associated with maps, from strings to values, as they are available in JSON.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 86

The additional quality "properties" is a map the entries of which describe entries in the
specified JSON map: the key gives an allowable map key for the specified JSON map and the
value is a map with a named set of data qualities giving the type for the corresponding value in
the specified JSON map.

All entries specified in this way are optional unless they are listed in the value of the additional
quality "required", which is an array of string values that give the key names of required
entries.

Note that the term "properties" as an additional quality for defining map entries is unrelated to
sdfProperty.

For example, to include information about the type of the event in the "overTemperatureEvent"
of Figure 4, the sdfOutputData there could be defined as follows:

Figure 6: Using Object Type with sdfOutputData

 "sdfOutputData": {
 "type": "object",
 "properties": {
 "alarmType": {
 "sdfRef": "cap:#/sdfData/alarmTypes/quantityAlarms",
 "const": "OverTemperatureAlarm"
 },
 "temperature": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"
 }
 }
 }

C.6. Implementation Notes
JSO-based keywords are also used in the specification techniques of a number of ecosystems, but
some adjustments may be required.

For instance, is based on Swagger 2.0, which appears to be based on "draft-4"
 (also called draft-5, but semantically intended to be equivalent to draft-4). The

"exclusiveMinimum" and "exclusiveMaximum" keywords use the Boolean form there, so on
import to SDF, their values have to be replaced by the values of the respective
"minimum"/"maximum" keyword, which are then removed; the reverse transformation applies on
export.

[OCF] [JSO4]
[JSO4V]

Appendix D. Composition Examples
This informative appendix contains two examples illustrating different composition approaches
using the sdfThing quality.

D.1. Outlet Strip Example

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 87

Figure 7: Outlet Strip Example

{
 "sdfThing": {
 "outlet-strip": {
 "label": "Outlet strip",
 "description": "Contains a number of Sockets",
 "sdfObject": {
 "socket": {
 "description": "An array of sockets in the outlet strip",
 "minItems": 2,
 "maxItems": 10
 }
 }
 }
 }
}

D.2. Refrigerator-Freezer Example

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 88

Figure 8: Refrigerator-Freezer Example

{
 "sdfThing": {
 "refrigerator-freezer": {
 "description": "A refrigerator combined with a freezer",
 "sdfProperty": {
 "status": {
 "type": "boolean",
 "description":
"Indicates if the refrigerator-freezer is powered"
 }
 },
 "sdfObject": {
 "refrigerator": {
 "description": "A refrigerator compartment",
 "sdfProperty": {
 "temperature": {
 "sdfRef": "#/sdfProperty/temperature",
 "maximum": 8
 }
 }
 },
 "freezer": {
 "label": "A freezer compartment",
 "sdfProperty": {
 "temperature": {
 "sdfRef": "#/sdfProperty/temperature",
 "maximum": -6
 }
 }
 }
 }
 }
 },
 "sdfProperty": {
 "temperature": {
 "description": "The temperature for this compartment",
 "type": "number",
 "unit": "Cel"
 }
 }
}

Appendix E. Some Changes from Earlier Draft Versions of this
Specification
This appendix is informative.

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 89

The present document provides the base SDF definition. Previous revisions of SDF, as defined in
earlier drafts of this specification, have been in use for several years; both significant collections
of older SDF models and older SDF conversion tools are available today. This appendix provides
a brief checklist that can aid in upgrading these to the standard.

The quality unit was previously called units.
sdfType was developed out of a concept previously called subtype.
sdfChoice is the preferred way to represent JSO enum (only a limited form of which is
retained) and also the way to represent JSO anyOf.
The length of text strings (as used with minLength/maxLength constraints) was previously
defined in bytes. It now is defined as the number of characters (Unicode scalar values, to be
exact); a length in bytes is not meaningful unless bound to a specific encoding, which might
differ from UTF-8 in some ecosystem mappings and protocol bindings.

•
•
•

•

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

List of Figures

A Simple Example of an SDF Document

Main Classes Used in SDF Models

Example sdfObject Definition

Using sdfRequired

Using an Override to Further Restrict the Set of Data Values

Using Object Type with sdfOutputData

Outlet Strip Example

Refrigerator-Freezer Example

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

List of Tables

Qualities of the Information Block

Namespaces Block

Common Qualities

SDF-Defined Qualities of sdfData and sdfProperty

Values Defined in Base SDF for the sdfType Quality

Qualities of sdfObject

Qualities of sdfProperty

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 90

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Qualities of sdfAction

Qualities of sdfEvent

Qualities of sdfThing

Media Type Registration for SDF

SDF Content-Format Registration

Initial Content of the SDF Quality Names Registry

Acknowledgements
This specification is based on work by the One Data Model group.

Contributors
Jan Romann
Universität Bremen
Germany

jan.romann@uni-bremen.deEmail:

Wouter van der Beek
Cascoda Ltd.
Threefield House
Threefield Lane
Southampton
United Kingdom

w.vanderbeek@cascoda.comEmail:

Authors' Addresses
Michael Koster ()editor
KTC Control AB
29415 Alderpoint Road

, Blocksburg CA 95514
United States of America

+1-707-502-5136Phone:
michaeljohnkoster@gmail.comEmail:

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 91

mailto:jan.romann@uni-bremen.de
mailto:w.vanderbeek@cascoda.com
tel:+1-707-502-5136
mailto:michaeljohnkoster@gmail.com

Carsten Bormann ()editor
Universität Bremen TZI
Postfach 330440
D-28359 Bremen
Germany

+49-421-218-63921Phone:
cabo@tzi.orgEmail:

Ari Keränen
Ericsson
FI-02420 Jorvas
Finland

ari.keranen@ericsson.comEmail:

RFC 9880 SDF: Semantic Definition Format January 2026

Koster, et al. Standards Track Page 92

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:ari.keranen@ericsson.com

	RFC 9880
	Semantic Definition Format (SDF) for Data and Interactions of Things
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Structure of This Document
	1.2. Terminology and Conventions
	1.2.1. Programming Platform Terms
	1.2.2. Conceptual Terms
	1.2.3. Specification Language Terms
	1.2.4. Conventions

	2. Overview
	2.1. Example Definition
	2.2. Elements of an SDF Model
	2.2.1. sdfObject
	2.2.2. sdfProperty
	2.2.3. sdfAction
	2.2.4. sdfEvent
	2.2.5. sdfData
	2.2.6. sdfThing

	2.3. Member Names: Given Names and Quality Names
	2.3.1. Given Names and Quality Names
	2.3.2. Hierarchical Names
	2.3.3. Extensibility of Given Names and Quality Names

	3. SDF Structure
	3.1. Information Block
	3.2. Namespaces Block
	3.3. Definitions Block
	3.4. Top-Level Affordances and sdfData

	4. Names and Namespaces
	4.1. Structure
	4.2. Contributing Global Names
	4.3. Referencing Global Names
	4.4. sdfRef
	4.4.1. Resolved Models

	4.5. sdfRequired
	4.6. Common Qualities
	4.7. Data Qualities
	4.7.1. sdfType
	4.7.2. sdfChoice

	5. Keywords for Definition Groups
	5.1. sdfObject
	5.2. sdfProperty
	5.3. sdfAction
	5.4. sdfEvent
	5.5. sdfData

	6. High-Level Composition
	6.1. Paths in the Model Namespaces
	6.2. Modular Composition
	6.2.1. Use of the "sdfRef" Keyword to Reuse a Definition

	6.3. sdfThing

	7. IANA Considerations
	7.1. Media Type
	7.2. Content-Format
	7.3. IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)
	7.4. SenML Registry Group
	7.5. Registries
	7.5.1. SDF Quality Names
	7.5.2. SDF Quality Name Prefixes
	7.5.3. sdfType Values
	7.5.4. SDF Feature Names

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Formal Syntax of SDF
	Appendix B. json-schema.org Rendition of SDF Syntax
	Appendix C. Data Qualities Inspired by json-schema.org
	C.1. type "number", type "integer"
	C.2. type "string"
	C.3. type "boolean"
	C.4. type "array"
	C.5. type "object"
	C.6. Implementation Notes

	Appendix D. Composition Examples
	D.1. Outlet Strip Example
	D.2. Refrigerator-Freezer Example

	Appendix E. Some Changes from Earlier Draft Versions of this Specification
	List of Figures
	List of Tables
	Acknowledgements
	Contributors
	Authors' Addresses

 Semantic Definition Format (SDF) for Data and Interactions of Things

 KTC Control AB

 29415 Alderpoint Road
 Blocksburg
 CA
 95514
 United States of America

 +1-707-502-5136
 michaeljohnkoster@gmail.com

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 Ericsson

 Jorvas
 02420
 Finland

 ari.keranen@ericsson.com

 ART
 asdf
 IoT
 Device Model
 Interaction Model
 Affordance
 Property
 Action
 Event

 The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and maintenance of data and interaction models that describe Things, i.e., physical objects that are available for interaction over a network. An SDF specification describes definitions of
SDF Objects/SDF Things and their associated interactions (Events, Actions, and Properties), as well as the Data types for the information exchanged
in those interactions. Tools convert this format to database formats
and other serializations as needed.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2026 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Structure of This Document

 . Terminology and Conventions

 . Programming Platform Terms

 . Conceptual Terms

 . Specification Language Terms

 . Conventions

 . Overview

 . Example Definition

 . Elements of an SDF Model

 . sdfObject

 . sdfProperty

 . sdfAction

 . sdfEvent

 . sdfData

 . sdfThing

 . Member Names: Given Names and Quality Names

 . Given Names and Quality Names

 . Hierarchical Names

 . Extensibility of Given Names and Quality Names

 . SDF Structure

 . Information Block

 . Namespaces Block

 . Definitions Block

 . Top-Level Affordances and sdfData

 . Names and Namespaces

 . Structure

 . Contributing Global Names

 . Referencing Global Names

 . sdfRef

 . Resolved Models

 . sdfRequired

 . Common Qualities

 . Data Qualities

 . sdfType

 . sdfChoice

 . Keywords for Definition Groups

 . sdfObject

 . sdfProperty

 . sdfAction

 . sdfEvent

 . sdfData

 . High-Level Composition

 . Paths in the Model Namespaces

 . Modular Composition

 . Use of the "sdfRef" Keyword to Reuse a Definition

 . sdfThing

 . IANA Considerations

 . Media Type

 . Content-Format

 . IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)

 . SenML Registry Group

 . Registries

 . SDF Quality Names

 . SDF Quality Name Prefixes

 . sdfType Values

 . SDF Feature Names

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Formal Syntax of SDF

 . json-schema.org Rendition of SDF Syntax

 . Data Qualities Inspired by json-schema.org

 . type " number", type " integer"

 . type " string"

 . type " boolean"

 . type " array"

 . type " object"

 . Implementation Notes

 . Composition Examples

 . Outlet Strip Example

 . Refrigerator-Freezer Example

 . Some Changes from Earlier Draft Versions of this Specification

 List of Figures

 List of Tables

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction
 The Semantic Definition Format (SDF) is concerned with Things,
namely physical objects that are available for interaction over a
network.
SDF is a format for domain experts to
use in the creation and maintenance of data and interaction models
that describe Things.
An SDF specification describes definitions of
SDF Objects/SDF Things and their associated interactions (Events, Actions,
and Properties), as well as the Data types for the information exchanged
in those interactions. Tools convert this format to database formats
and other serializations as needed.
 SDF is designed to be an extensible format.
The present document constitutes the base specification for SDF,
"base SDF" for short.
In addition, SDF extensions can be defined, some of which may make use
of extension points specifically defined for this in base SDF.
One area for such extensions would be refinements of SDF's abstract
interaction models into protocol bindings for specific ecosystems
(e.g.,).
For the use of certain other extensions, it may be necessary to
indicate in the SDF
document using them that a specific extension is in effect; see
 for details of the features quality that can be
used for such indications.
With extension points and feature indications available,
base SDF does not define a "version" concept for the SDF format itself
(as opposed to version indications within SDF documents indicating
their own evolution; see).

 Structure of This Document
 After introductory material and an overview () over the
elements of the model and the different kinds of names used,
 introduces the main components of an SDF model.
 revisits names and structures them into
namespaces.
 discusses the inner structure of the Objects defined by
SDF, the sdfObjects, in further detail.
 discusses how SDF supports composition.
Conventional Sections (, ,
 , and)
follow.
The normative defines the syntax of SDF in
terms of its JSON structures, employing the Concise Data Definition
Language (CDDL) .
This is followed by the informative , a rendition of the SDF
syntax in a "JSON Schema" format as they are defined by
 json-schema.org (collectively called JSO).
The normative defines certain terms ("data qualities")
used at the SDF data model level that were inspired by JSO.
The informative provides a few
examples for the use of composition in SDF.
Finally, provides some historical information that can be
useful in upgrading earlier, pre-standard SDF models and
implementations to base SDF.

 Terminology and Conventions
 Terms introduced in this section are capitalized when used in this
section. To maintain readability, capitalization is only used when
needed where they are used in the body of this document.

 Programming Platform Terms
 The following definitions mention terms that are used with specific
meanings in various programming platforms, but often have an
independent definition for this document, which can be found further
below in this section.

 Element:

 A generic term used here in its English sense.
Exceptionally, in , the term is used explicitly in accordance with
its meaning in the JSON ecosystem, i.e., the elements of JSON
arrays.

 Entry:

 A key-value pair in a map. (In JSON maps, sometimes also called "member".)

 Map:

 A collection of entries (key-value pairs) where there are no two
entries with equivalent keys.
(Also known as associative array, dictionary, or symbol table.)

 Object:

 An otherwise very generic term that JavaScript (and thus JSON) uses
for the kind of maps that were part of the original languages from
the outset.
In this document, Object is used exclusively in its general English
meaning or as the colloquial shorthand for sdfObject, even if the
type name " object" is imported with JSON-related semantics from a
data definition language.

 Property:

 Certain environments use the term "property" for a JSON concept that
JSON calls "member" and is called "entry" here, or sometimes just for the
map key of these.
In this document, the term Property is specifically reserved for a
certain kind of Affordance, even if the map key " properties" is
imported with JSON-related semantics from a data definition
language.

 Byte:

 This document uses the term "byte" in its now-customary sense as a
synonym for "octet".

 Conceptual Terms

 Thing:

 A physical item that is also available for interaction over a network.

 Element:

 A part or an aspect of something abstract; i.e., the term is used
here in its usual English definition.

 Affordance:

 An element of an interface offered for interaction.
Such an element becomes an Affordance when information is available
(directly or indirectly) that indicates how it can or should be
used.
In the present document, the term is used for the digital
(network-directed) interfaces of a Thing only; as it is a physical
object as well, the Thing might also have physical affordances such
as buttons, dials, and displays.
The specification language offers certain ways to create sets of
related Affordances and combine them into "Groupings" (see below).

 Property:

 An Affordance that can potentially be used to read, write, and/or
observe state (current/stored information) on a Grouping.

 Action:

 An Affordance that can potentially be used to perform a named operation on a Grouping.

 Event:

 An Affordance that can potentially be used to obtain information
about what happened to a Grouping.

 Specification Language Terms

 SDF Document:

 Container for SDF Definitions, together with data
about the SDF Document itself (information block).
Represented as a JSON text representing a single JSON map, which is
built from nested maps.

 SDF Model:

 Definitions and declarations that model the digital interaction
opportunities offered by one or more kinds of Things, represented
by Groupings (sdfObjects and sdfThings).
An SDF Model can be fully contained in a single SDF Document, or it
can be built from an SDF Document that references definitions and
declarations from additional SDF documents. The term SDF Specification can be used when the distinction between the distribution into individual SDF Documents and
the abstract nature of the SDF Model is not of interest.

 Block:

 One or more entries in a JSON map that is part of an SDF
specification. These entries can be described as a Block to
emphasize that they serve a specific function together.

 Group:

 An entry in the top-level JSON map that represents the SDF
 document. Groups also can be used in certain nested definitions.
A group
has a Class Name Keyword as its key and a map of named definition
entries (Definition Group) as a value.

 Class Name Keyword:

 One of sdfThing, sdfObject, sdfProperty, sdfAction,
 sdfEvent, or sdfData. The Classes for these type keywords are
capitalized and prefixed with sdf.

 Class:

 Abstract term for the information that is contained in groups
identified by a Class Name Keyword.

 Quality:

 A metadata item in a definition or declaration that says something
about that definition or declaration. A quality is represented in
SDF as an entry in a JSON map (JSON object) that serves as a definition
or declaration.
(The term "Quality" is used because another popular term,
"Property", already has a different meaning.)

 Definition:

 An entry in a Definition Group.
The entry creates a new semantic term for use in SDF models and
associates it with a set of qualities.
Unless the Class Name Keyword of the Group also makes it a
Declaration (see), a definition just defines a
term and it does not create a component item within the enclosing
definition.

 Declaration:

 A definition within an enclosing
definition that is intended to create a component item within that
enclosing definition. Every declaration can also be used as a
definition for reference elsewhere.

 Grouping:

 An sdfThing or sdfObject, i.e., (directly or indirectly) a
description for a combination of Affordances.

 Object, sdfObject:

 A Grouping where the declarations that it contains are for Affordances only (Property, Action, and Event declarations).
It serves as the main "atom" of reusable semantics for model
construction, representing the interaction model for a Thing that is
simple enough to not require a nested structure.
Therefore, sdfObjects are similar to sdfThings, but do not allow
nesting, i.e., they cannot contain other Groupings (sdfObjects or
sdfThings).

 sdfThing:

 A Grouping that can contain nested Groupings (sdfThings and sdfObjects).
Like sdfObject, it can also contain Affordance
declarations (Property, Action, and Event declarations).
(Note that "Thing" has a different meaning from sdfThing and
is therefore not available as a colloquial shorthand of
sdfThing.)

 Augmentation Mechanism:

 A companion document to a base SDF Model that provides additional
information ("augments" the base specification).
The information may be for use in
a specific ecosystem or with a specific protocol ("Protocol Binding").
No specific Augmentation Mechanisms are defined in base SDF.
A simple mechanism for such augmentations has been discussed as a
"mapping file" .

 Protocol Binding:

 A companion document to an SDF Model that defines how to map the
abstract concepts in the model into the protocols that are in use in a
specific ecosystem.
The Protocol Binding might supply URL components, numeric IDs, and
similar details.
Protocol Bindings are one case of an Augmentation Mechanism.

 Conventions
 Regular expressions that are used in the text as a "pattern" for some
string are interpreted as per .
(Note that a form of regular expressions is also used as values of the
quality pattern; see .)
 The term "URI" in this document always refers to "full" URIs (" URI" in
Section of RFC 3986), never to relative URI references
(" relative-ref" in Section of RFC 3986), so the term "URI"
does NOT serve as the colloquial abbreviation of "URI-Reference" it is
often used for.
Therefore, the "reference resolution" process defined in Section of RFC 3986 is NOT used in this specification.
Where necessary, full URIs are assembled out of substrings by simple
concatenation, e.g., when CURIEs are expanded () or when a
global name is formed out of a namespace absolute-URI (Section of RFC 3986) and a fragment identifier part ().
Also note that URIs are not only used to construct the SDF models,
they are also the subject of SDF models where they are used as data
in actual interactions (and could even be represented as relative
references there); these two usages are entirely separate.
 The singular form is chosen as the preferred one for the keywords
defined in this specification.

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Overview

 Example Definition
 The overview starts with an example for the SDF definition of a simple sdfObject called "Switch" ().

 A Simple Example of an SDF Document

{
 "info": {
 "title": "Example document for SDF (Semantic Definition Format)",
 "version": "2019-04-24",
 "copyright": "Copyright 2019 Example Corp. All rights reserved.",
 "license": "https://example.com/license"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "Switch": {
 "sdfProperty": {
 "value": {
 "description":
"The state of the switch; false for off and true for on.",
 "type": "boolean"
 }
 },
 "sdfAction": {
 "on": {
 "description":
"Turn the switch on; equivalent to setting value to true."
 },
 "off": {
 "description":
"Turn the switch off; equivalent to setting value to false."
 },
 "toggle": {
 "description":
"Toggle the switch; equivalent to setting value to its complement."
 }
 }
 }
 }
}

 This is a model of a switch.
The state value declared in the sdfProperty group, represented by a Boolean, will be true for "on" and will be false for "off".
The Actions on or off declared in the sdfAction group are redundant with setting the value and are in the example to illustrate that there are often different ways of achieving the same effect.
The action toggle will invert the value of the sdfProperty value so that 2-way switches can be created; having such action will avoid the need for retrieving the current value first and then applying/setting the inverted value.
 The sdfObject group lists the affordances of Things modeled by this sdfObject.
The sdfProperty group lists the Property affordances described by the model; these represent various perspectives on the state of the sdfObject.
Properties can have additional qualities to describe the state more precisely.

Properties can be annotated to be read, write, or read/write; how this is actually done by the underlying transfer protocols is not described in the SDF model but left to companion protocol bindings.
Properties are often used with RESTful paradigms describing state.
The sdfAction group is the mechanism to describe other interactions in terms of their names, input, and output data (no data are used in the example), as in a POST method in REST or in a remote procedure call.
The example toggle is an Action that
changes the state based on the current state of the Property named value.
(The third type of affordance is Events, which are not described in this example.)
 In the JSON representation, the info group is an exception in that
this group's map has keys taken from the SDF vocabulary.
All other groups (such as namespace and sdfObject) have maps with
keys that are freely defined by the model writer (Switch, value,
 on, etc.). These map keys are therefore called Given Names.
The groups made up of entries with Given Names as keys usually use the
 named<> production in the formal syntax of SDF ().
Where the values of these entries are maps, these again use SDF
vocabulary keys, and so on, generally alternating in further nesting.
The SDF-defined vocabulary items used in the hierarchy of such groups
are often, but not always, called Quality Names or qualities.
See for more information about naming in SDF.

 Elements of an SDF Model
 The SDF language uses six predefined Class Name Keywords for modeling connected
Things, which are illustrated in (limited rendition in
the plaintext form of this document, please use typographic forms for
full information).

 Main Classes Used in SDF Models

 sdfThing

 sdfObject

 sdfProperty

 sdfAction

 sdfEvent

 sdfData

 hasObject
 0+

 hasThing
 0+

 hasProperty
 0+

 hasAction
 0+

 hasEvent
 0+

 hasProperty
 0+

 hasAction
 0+

 hasEvent
 0+

 hasInputData
 0+

 hasOutputData
 0+

 hasOutputData
 0+

 isInstanceOf
 1

 ,--------.
 |sdfThing|------.
 ,--------------|--------| | hasThing
 | |--------|<-----'
 | `--------'
 | | | |
 | hasObject | | \
 | v | \
 | ,---------. | \
 | |sdfObject| | \
 | |---------| | \
 ,--------|---------|---------.
 | `---------' | |
has|Property | hasAction | hasEvent
 v v v v
,-----------. ,---------. ,--------.
sdfProperty		sdfAction		sdfEvent
-----------		---------		--------
-----------		---------		--------
`-----------' `---------' `--------'				
hasInput		hasOutput		
Data		Data		
v v				
,-------.				
isInst	sdfData	hasOutp		
 `----------->|-------|<----------'
 anceOf |-------| utData
 `-------'

 The six main Class Name Keywords are discussed below.

 sdfObject
 sdfObjects, the items listed in an sdfObject definition group, are
the main "atom" of reusable semantics for model construction.
The concept aligns in scope with common definition items from many IoT modeling
systems, e.g., ZigBee Clusters , OMA SpecWorks LwM2M
Objects , OCF Resource Types , and W3C Web of Things Thing Descriptions .
 An sdfObject definition contains a set of sdfProperty, sdfAction, and
 sdfEvent definitions that describe the interaction affordances
associated with some scope of functionality.
 For the granularity of definition, sdfObject definitions are meant
to be kept narrow enough in scope to enable broad reuse and
interoperability.
For example, defining a light bulb using separate sdfObject
definitions for on/off control, dimming, and color control affordances
will enable interoperable functionality to be configured for diverse
product types.
An sdfObject definition for a common on/off control may be used to
control many different kinds of Things that require on/off control.
 The presence of one or both of the optional qualities " minItems" and
" maxItems" defines the sdfObject as an array, i.e., all the
affordances defined for the sdfObject exist a number of times, indexed
by a number constrained to be between minItems and maxItems,
inclusive, if given.
(Note: Setting " minItems" to zero and leaving out " maxItems" puts the
minimum constraints on that array.)

 sdfProperty
 sdfProperty is used to model elements of state within Things modeled
by the enclosing grouping.
 A named definition entry in an sdfProperty may be associated with some protocol
affordance to enable the application to obtain the state variable and,
optionally, modify the state variable.
Additionally, some protocols provide for in-time reporting of state
changes.
(These three aspects are described by the qualities readable,
 writable, and observable defined for an sdfProperty.)
 Definitions in sdfProperty groups look like the definitions in
 sdfData groups.
However, they actually declare that a Property
with the given qualities potentially is present in the containing sdfObject.
 For definitions in sdfProperty and sdfData, SDF provides qualities
that can constrain the structure and values of data allowed in the
interactions modeled by them.
It also provides qualities that associate semantics to this
data, such as engineering units and unit scaling information.
 For the data definition within sdfProperty or sdfData, SDF borrows
some vocabulary proposed for drafts 4 and 7
 of the json-schema.org "JSON Schema" format
(collectively called JSO here), enhanced by qualities that are
specific to SDF.
Details about the JSO-inspired vocabulary are in .
For base SDF, data are constrained to be of
simple types (number, string, boolean),
JSON maps composed of named data, and arrays of these types.
Syntax extension points are provided that can be used to provide
richer types in a future extension of this specification (possibly more
of which can be borrowed from json-schema.org).
 Note that sdfProperty definitions (and sdfData definitions in
general) are not intended to constrain the formats of data used for
communication over network interfaces.
Where needed, data definitions for payloads of protocol messages are
expected to be part of the protocol binding.

 sdfAction
 The sdfAction group contains declarations of Actions, which
model affordances that, when triggered,
have an effect that can go beyond just reading, updating, or observing Thing
state.
Actions often result in some outward physical effect (which, itself,
cannot be modeled in SDF). From a programmer's perspective, they
might be considered to be roughly analogous to method calls.
 Actions may have data parameters; these are each modeled as a single item of input
data and output data. Where multiple parameters need to be
modeled, an " object" type can be used to combine these parameters
into one; for an example, see in .
 Actions may be long-running, that is to say that the effects may not
take place immediately as would be expected for an update to an
sdfProperty; the effects may play out over time and emit action
results.
Actions may also not always complete and may result in application
errors, such as an item blocking the closing of an automatic door.
 One idiom for giving an action initiator status and control about the
ongoing action is to provide a URI for an ephemeral "action resource"
in the sdfAction output data, allowing the action to deliver
immediate feedback (including errors that prevent the action from
starting) and the action initiator to use the action resource
for further observation or modification of the ongoing action
(including canceling it).
Base SDF does not provide any tailored support for describing such
action resources; an extension for modeling links in more detail
(for instance,) may be all that is needed to fully enable modeling
them.
 Actions may have (or lack) the characteristics of idempotence and side-effect
safety (see Section of RFC 9110 for more on these terms).
 Base SDF only provides data constraint modeling and semantics for the input and output data of definitions in sdfAction groups.
Again, data definitions for payloads of protocol messages, and
detailed protocol settings for invoking the action, are expected to be
part of the protocol binding.

 sdfEvent
 The sdfEvent group contains declarations of Events, which model
affordances that inform about "happenings" associated with a Thing
modeled by the enclosing sdfObject; these may result in a signal being
stored or emitted as a result.
 Note that there is a trivial overlap with sdfProperty state changes,
which may also be defined as Events but are not generally required to
be defined as such.
However, Events may exhibit certain ordering, consistency, and
reliability requirements that are expected to be supported in various
implementations of sdfEvent that do distinguish sdfEvent from
sdfProperty.
For instance, while a state change may simply be superseded by another
state change, some Events are "precious" and need to be preserved even
if further Events follow.
 Base SDF only provides data constraint modeling and
semantics for the output data of Event affordances.
Again, data definitions for payloads of protocol messages, and
detailed protocol settings for soliciting the event, are expected to be
part of the protocol binding.

 sdfData
 Definitions in sdfData groups do not themselves specify affordances.
These definitions
are provided separately from those in
sdfProperty groups to enable common
modeling patterns, data constraints, and semantic anchor concepts to
be factored out for data items that make up sdfProperty items and
serve as input and output data for sdfAction and sdfEvent items.
The data types defined in sdfData definitions only spring to life by being referenced in
one of these contexts (directly or indirectly via some other sdfData
definitions).
 It is a common use case for such a data definition to be shared
between an sdfProperty item and input or output parameters of an
sdfAction or output data provided by an sdfEvent.
sdfData definitions also enable factoring out extended application
data types, such as mode and machine state enumerations to be reused
across multiple definitions that have similar basic characteristics
and requirements.

 sdfThing
 Back at the top level, the sdfThing group enables definition of models for
complex devices that will use one or more sdfObject definitions.
Like sdfObject, sdfThing groups allow for the inclusion of interaction
affordances, sdfData, as well as " minItems" and " maxItems" qualities.
Therefore, they can be seen as a superset of sdfObject groups, additionally
allowing for composition.
 As a result, an sdfThing directly or indirectly contains a set of sdfProperty, sdfAction, and
sdfEvent definitions that describe the interaction affordances
associated with some scope of functionality.
 A definition in an sdfThing group can refine the metadata of the definitions it
is composed of: other definitions in sdfThing groups or definitions in sdfObject groups.

 Member Names: Given Names and Quality Names
 SDF documents are JSON maps that mostly employ JSON maps as
member values, which in turn mostly employ JSON maps as their
member values, and so on.
This nested structure of JSON maps creates a tree, where the edges
are the member names (map keys) used in these JSON maps.
(In certain cases, where member names are not needed, JSON arrays may
be interspersed in this tree.)

 Given Names and Quality Names
 For any particular JSON map in an SDF document, the set of member
names that are used is either:

 A set of " Quality Names", where the entries in the map are
Qualities. Quality Names are defined by the present specification
and its extensions, together with specific semantics to be
associated with the member value given with a certain Quality Name.

 A set of " Given Names", where the entries in the map are separate
entities (definitions, declarations, etc.) that each have names that
are chosen by the SDF document author in order that these names can be
employed by a user of that model.

 In a path from the root of the tree to any leaf, Quality Names and
Given Names roughly alternate (with the information block,
 , as a prominent exception).
 The meaning of the JSON map that is the member value associated
with a Given Name is derived from the Quality Name that was used as
the member name associated to the parent.
In the CDDL grammar given in , JSON maps with member names that are
Given Names are defined using the CDDL generic rule reference named<membervalues>,
where membervalues is in turn the structure of the member values of the
JSON map, i.e., the value of the member named by the Given Name.
As quality-named maps and given-named maps roughly alternate in
a path down the tree, membervalues is usually a map built from
Quality Names as keys.

 Hierarchical Names
 From the outside of a specification, Given Names are usually used as
part of a hierarchical name that looks like a JSON Pointer .
These hierarchical names are
generally rooted in (used as the fragment identifier in) an
outer namespace that looks like an https:// URL (see).
 As Quality Names and Given Names roughly alternate in a path into the
model, the JSON Pointer part of the hierarchical name also alternates
between Quality Names and Given Names.
 Note that the actual Given Names may need to be encoded when specified
via the JSON Pointer fragment identifier syntax. There are
two layers of such encoding: tilde encoding of ~ and / as per
 , as well as percent encoding of the
tilde-encoded name into a valid URI fragment as per .
For example, when a model is using the Given Name

 warning/danger alarm

 (with an embedded slash and a space) for an
sdfObject, that sdfObject may need to be referenced as

 #/sdfObject/warning~1danger%20alarm

 To sidestep potential interoperability problems, it is probably wise
to avoid characters in Given Names that need such encoding (Quality
Names are already defined in such a way that they never do).

 Extensibility of Given Names and Quality Names
 In SDF, both Quality Names and Given Names are extension points.
This is more obvious for Quality Names. Extending SDF is mostly done
by defining additional qualities. To enable non-conflicting third
party extensions to SDF, qualified names (names with an embedded
colon) can be used as Quality Names.
 A nonqualified Quality Name is composed of ASCII letters, digits, and
 $ signs, starting with a lowercase letter or a $ sign (i.e.,
using a pattern of " [a-z$][A-Za-z$0-9]*").
Names with $ signs are intended to be used for functions separate
from most other names; for instance, $comment
is used for the comment quality in this specification (the presence or absence of a
 $comment quality does not change the meaning of the SDF model).
Names that are composed of multiple English words can use the
"lowerCamelCase" convention for indicating the word
boundaries; no other use is intended for upper case letters in Quality
Names.
 A qualified Quality Name is composed of a Quality Name Prefix, a :
(colon) character, and a nonqualified Quality Name.
Quality Name Prefixes are registered in the "Quality Name Prefixes"
registry in the "Semantic Definition Format (SDF)" registry group ().
They are
composed of lowercase ASCII letters and digits, starting with a lowercase ASCII letter (i.e., using a pattern of " [a-z][a-z0-9]*").
 Given Names are not restricted by the formal SDF syntax.
To enable non-surprising name translations in tools, combinations of
ASCII alphanumeric characters and - (ASCII hyphen/minus) are preferred,
typically employing kebab-case for names constructed out of multiple
words . ASCII hyphen/minus can then unambiguously be
translated to an ASCII _ underscore character and back depending on
the programming environment.
Some styles also allow a dot (" .") in Given Names.
Given Names are often sufficiently self-explanatory that they can be
used in place of the label quality if that is not given.
In turn, if a Given Name turns out too complicated, a more elaborate
 label can be given and the Given Name kept simple.
As Given Names are "programmers' names", base SDF does not address
internationalization of Given Names.
(More likely qualities to receive localizable equivalents by
exercising the Quality Name extension point are label and
 description).
 Further, to enable Given Names to have a more powerful role in building
global hierarchical names, an extension is foreseen that makes use of
qualified names for Given Names.
So, until that extension is defined, Given Names with one or more
embedded colons are reserved and MUST NOT be used in an SDF document.
 All names in SDF are case-sensitive.

 SDF Structure
 SDF definitions are contained in SDF documents together with data
about the SDF document itself (information block).
Definitions and declarations from additional SDF documents can be
referenced; together with the definitions and declarations in the
referencing SDF document, they build the SDF model expressed by that
SDF document.
 Each SDF document is represented as a single JSON map.
This map can be thought of as having three blocks: the information
block, the namespaces block, and the definitions block.
These blocks contain zero or more JSON name/value pairs, the names of
which are Quality Names and the values of which mostly are (nested)
maps (the exception defined in base SDF is the defaultNamespace
quality, the value of which is a text string).
An empty nested map of this kind is equivalent to not having the
quality included at all.

 Information Block
 The information block contains generic metadata for the SDF document
itself and all included definitions.
To enable tool integration, the information block is optional in the grammar
of SDF; most processes for working with SDF documents will have policies
that only SDF documents with an info block can be processed.
It is therefore RECOMMENDED that SDF validator tools emit a warning
when no information block is found.
 The keyword (map key) that defines an information block is "info". The keyword's value is a nested JSON map with a set of entries that represent
qualities that apply to the included definitions.
 Qualities of this map are shown in .
None of these qualities are required or have default values that are
assumed if the quality is absent.

 Qualities of the Information Block

 Quality
 Type
 Description

 title
 string
 A short summary to be displayed in search results, etc.

 description
 string
 Long-form text description (no constraints)

 version
 string
 The incremental version of the definition

 modified
 string
 Time of the latest modification

 copyright
 string
 Link to text or embedded text containing a copyright notice

 license
 string
 Link to text or embedded text containing license terms

 features
 array of strings
 List of extension features used

 $comment
 string
 Source code comments only, no semantics

 The version quality is used to indicate version information about the
set of definitions in the SDF document.
The version is RECOMMENDED to be lexicographically increasing over the life of a model; a newer model always has a version string that string-compares higher than all previous versions.

This is easily achieved by following the convention to start the version with a date-time as defined in or, if new versions are generated less frequently than once a day, just the full-date (i.e., YYYY-MM-DD); in many cases, that will be all that is needed (see for an example).
 This specification does not give a strict definition for the format of the
 version string, but each system or organization using the version string
 should define internal structure and semantics to the level needed for
 their use. If no further details are provided, a date-time or
 full-date in this field can be assumed to indicate the latest
 update time of the definitions in the SDF document.
 The modified quality can be used with a value using date-time as defined in (with Z for time-zone) or full-date format to express time of the latest revision of the definitions.
 The license string is preferably either a URI that points to a web page with an unambiguous definition of the license or an license identifier.
(As an example, for models to be handled by the One Data Model liaison
group, this license identifier will typically be "BSD-3-Clause".)
 The features quality can be used to list names of critical (i.e., cannot be safely ignored) SDF extension features that need to be understood for the definitions to be properly processed.
Extension feature names will be specified in extension documents.
They can either be registered (see for specifics, which make sure
that a registered feature name does not contain a colon) or be a URI
(which always contain a colon).
Note that SDF processors are not expected to, and normally SHOULD NOT,
dereference URIs used as feature names; any representation retrievable
under such a URI could be useful to humans, though.
(See for a more extensive discussion of dereferenceable
identifiers).

 Namespaces Block
 The namespaces block contains the namespace map and the
 defaultNamespace setting; none of these qualities are required or
have default values that are assumed if the quality is absent.
 The namespace map is a map from short names for URIs to the namespace URIs
themselves.
 The defaultNamespace setting selects one of the entries in the
namespace map by giving its short name. The associated URI (value of
this entry) becomes the default namespace for the SDF document.

 Namespaces Block

 Quality
 Type
 Description

 namespace
 map
 Defines short names mapped to namespace URIs, to be used as identifier prefixes

 defaultNamespace
 string
 Identifies one of the prefixes in the namespace map to be used as a default in resolving identifiers

 The following example declares a set of namespaces and defines cap
as the default namespace.
By convention, the values in the namespace map contain full URIs
without a fragment identifier and the fragment identifier is then
added, if needed, where the namespace entry is used.

"namespace": {
 "cap": "https://example.com/capability/cap",
 "zcl": "https://zcl.example.com/sdf"
},
"defaultNamespace": "cap"

 Multiple SDF documents can contribute to the same namespace by using
the same namespace URI for the default namespace across the documents.
 If no defaultNamespace setting is given, the SDF document does not
contribute to a global namespace (all definitions remain local to the
model and are not accessible for re-use by other models).
As the defaultNamespace is set by supplying a
namespace short name, its presence requires a namespace map that contains a
mapping for that namespace short name.
 If no namespace map is given, no short names for namespace URIs are
set up and no defaultNamespace can be given.

 Definitions Block
 The Definitions block contains one or more groups, each identified by
a Class Name Keyword such as sdfObject or sdfProperty.
There can only be one group per keyword at this level; putting all the
individual definitions in the group under that keyword is just a
shortcut for identifying the class name keyword that applies to each
of them without repeating it for each definition.
 The value of each group is a JSON map, the keys of which serve for naming the individual definitions in this group, and the corresponding values provide a set of qualities (name-value pairs) for the individual definition.
(In short, these map entries are also termed "named sets of qualities".)
 Each group may contain zero or more definitions.
Each identifier defined creates a new type and term in the target namespace.
Declarations have a scope of the definition block they are
directly contained in.
 In turn, a definition may contain other definitions. Each definition is a named set of qualities, i.e., it consists of the newly defined identifier and a set of key-value pairs that represent the defined qualities and contained definitions.
 An example for an sdfObject definition is given in :

 Example sdfObject Definition

"sdfObject": {
 "foo": {
 "sdfProperty": {
 "bar": {
 "type": "boolean"
 }
 }
 }
}

 This example defines an sdfObject "foo" that is defined in the default namespace (full address: #/sdfObject/foo), containing a Property that can be addressed as
 #/sdfObject/foo/sdfProperty/bar, with data of type boolean.
 Often, definitions are also declarations. The definition of the
entry "bar" in the Property "foo" means that data corresponding to the
"foo" Property in a Property interaction offered by Thing can have zero or
one components modeled by "bar".
Entries within sdfProperty, sdfAction, and sdfEvent that are in
turn within sdfObject or sdfThing entries, are also declarations;
entries within sdfData are not.
Similarly, sdfObject or sdfThing entries within an sdfThing
definition specify that the
interactions offered by a Thing modeled by this sdfThing include the
interactions modeled by the nested sdfObject or sdfThing.

 Top-Level Affordances and sdfData
 Besides their placement within an sdfObject or sdfThing, affordances
(i.e., sdfProperty, sdfAction, and sdfEvent) as well as sdfData can
also be placed at the top level of an SDF document.
Since they are not associated with an sdfObject or sdfThing, these kinds of
definitions are intended to be reused via the sdfRef mechanism
(see).

 Names and Namespaces
 SDF documents may contribute to a global namespace and may
reference elements from that global namespace.
(An SDF document that does not set a defaultNamespace does not
contribute to a global namespace.)

 Structure
 Global names look exactly like https:// URIs with attached fragment identifiers.
 There is no intention to require that these URIs can be dereferenced.
(However, as future extensions of SDF might find a use for dereferencing
global names, the URI should be chosen in such a way that this may
become possible in the future.
See also for a discussion of dereferenceable identifiers.)
 The absolute-URI of a global name should be a URI as per Section of RFC 3986 with a scheme of "https" and a path (hier-part in).
For base SDF, the query part should
not be used (it might be used in extensions).
 The fragment identifier is constructed as per .

 Contributing Global Names
 The fragment identifier part of a global name defined in an SDF
document is constructed from a JSON Pointer that selects the
element defined for this name in the SDF document.
The absolute-URI part is a copy of the default namespace.
 As a result, the
default namespace is always the target namespace for a name for which
a definition is contributed.
In order to emphasize that name definitions are contributed to the
default namespace, this namespace is also termed the "target namespace" of
the SDF document.
 For instance, in , definitions for the following global names are contributed:

 https://example.com/capability/cap#/sdfObject/Switch

 https://example.com/capability/cap#/sdfObject/Switch/sdfProperty/value

 https://example.com/capability/cap#/sdfObject/Switch/sdfAction/on

 https://example.com/capability/cap#/sdfObject/Switch/sdfAction/off

 https://example.com/capability/cap#/sdfObject/Switch/sdfAction/toggle

 Note the #, which separates the absolute-URI part (Section of RFC 3986) from the fragment identifier part (including the #, a
JSON Pointer as in).

 Referencing Global Names
 A name reference takes the form of the production curie in Section 3
of , but limiting the IRIs involved in that grammar to URIs as
per and the prefixes to ASCII characters .
(Note that this definition does not make use of the production
 safe-curie in .)
 A name that is contributed by the current SDF document can be
referenced by a Same-Document Reference as per Section of RFC 3986 .
As there is little point in referencing the entire SDF document, this will be a # followed by a JSON Pointer.
This is the only kind of name reference to itself that is possible in an SDF
document that does not set a default namespace.
 Name references that point outside the current SDF document
need to contain CURIE prefixes. These then reference namespace
declarations in the namespaces block.
 For example, if a namespace prefix is defined:

"namespace": {
 "foo": "https://example.com/"
}

 then this reference to that namespace:

"sdfRef": "foo:#/sdfData/temperatureData"

 references the global name:

"https://example.com/#/sdfData/temperatureData"

 Note that there is no way to provide a URI scheme name in a CURIE, so
all references to outside of the document need to go through the
namespace map.
 Name references occur only in specific elements of the syntax of SDF:

 copying elements via sdfRef values

 pointing to elements via sdfRequired value elements

 sdfRef
 In a JSON map establishing a definition, the keyword sdfRef is used
to copy the qualities and enclosed definitions of the referenced
definition, indicated by the included name reference, into the newly
formed definition.
(This can be compared to the processing of the $ref keyword in .)
The referenced definition should be such that, after copying and
applying the additional qualities in the referencing definition, the
newly built definition is also valid SDF (e.g., the copied qualities
and definitions are valid in the context of the new definition).
 For example, this reference:

"temperatureProperty": {
 "sdfRef": "#/sdfData/temperatureData"
}

 creates a new definition "temperatureProperty" that contains all of the qualities defined in the definition at /sdfData/temperatureData.
 The sdfRef member need not be the only member of a map.
Additional members may be present with the intention of overriding parts
of the referenced map or adding new qualities or definitions.
 When processing sdfRef, if the target definition contains also sdfRef (i.e., is based on yet another definition), that MUST be processed as well.
 More formally, for a JSON map that contains an
sdfRef member, the semantics are defined to be as if the following steps were performed:

 The JSON map that contains the sdfRef member is copied into a
variable named "patch".

 The sdfRef member of the copy in "patch" is removed.

 The JSON Pointer that is the value of the sdfRef member is
dereferenced and the result is copied into a variable named "original".

 The JSON Merge Patch algorithm is applied to patch
the contents of "original" with the contents of "patch".

 The result of the Merge Patch is used in place of the value of the
original JSON map.

 Note that the formal syntaxes given in Appendices and
generally describe the result of applying a merge-patch. The notations
are not powerful enough to describe, for instance, how the merge-patch
algorithm causes null values within the sdfRef to remove members of JSON
maps from the referenced target.
Nonetheless, the syntaxes also give the syntax
of the sdfRef itself, which vanishes during the resolution; therefore, in many
cases, even merge-patch inputs will validate with these
formal syntaxes.
 Given the example () and the following definition:

{
 "info": {
 "title": "Example light switch using sdfRef"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "BasicSwitch": {
 "sdfRef": "cap:#/sdfObject/Switch",
 "sdfAction": {
 "toggle": null
 }
 }
 }
}

 The resulting definition of the "BasicSwitch" sdfObject would be identical to the definition of the "Switch" sdfObject, except it would not contain the "toggle" Action.

{
 "info": {
 "title": "Example light switch using sdfRef"
 },
 "namespace": {
 "cap": "https://example.com/capability/cap"
 },
 "defaultNamespace": "cap",
 "sdfObject": {
 "BasicSwitch": {
 "sdfProperty": {
 "value": {
 "description":
"The state of the switch; false for off and true for on.",
 "type": "boolean"
 }
 },
 "sdfAction": {
 "on": {
 "description":
"Turn the switch on; equivalent to setting value to true."
 },
 "off": {
 "description":
"Turn the switch off; equivalent to setting value to false."
 }
 }
 }
 }
}

 Resolved Models
 A model where all sdfRef references are processed as described in is called a resolved model.
 For example, given the following sdfData definitions:

"sdfData": {
 "Coordinate" : {
 "type": "number", "unit": "m"
 },
 "X-Coordinate" : {
 "sdfRef" : "#/sdfData/Coordinate",
 "description":
"Distance from the base of the Thing along the X axis."
 },
 "Non-neg-X-Coordinate" : {
 "sdfRef": "#/sdfData/X-Coordinate",
 "minimum": 0
 }
}

 the definitions would look as follows after being resolved:

"sdfData": {
 "Coordinate" : {
 "type": "number", "unit": "m"
 },
 "X-Coordinate" : {
 "description":
"Distance from the base of the Thing along the X axis.",
 "type": "number", "unit": "m"
 },
 "Non-neg-X-Coordinate" : {
 "description":
"Distance from the base of the Thing along the X axis.",
 "minimum": 0, "type": "number", "unit": "m"
 }
}

 sdfRequired
 The keyword sdfRequired is provided to apply a constraint that
defines for which declarations the corresponding data are mandatory in a
grouping (sdfThing or sdfObject) modeled by the current definition.
 The value of sdfRequired is an array of references, each indicating
one or more declarations that are mandatory to be represented.
 References in this array can be SDF names (JSON Pointers) or one of
two abbreviated reference formats:

 A text string with a "referenceable-name", namely an affordance name
or a grouping name:

 All affordance declarations that are directly in the same grouping
(i.e., not nested further in another grouping) and that carry this
name are declared to be mandatory to be represented.
Note that there can be multiple such affordance declarations, one
per affordance type.

 The same applies to groupings made mandatory within groupings
containing them.

 The Boolean value true.
The affordance or grouping itself that carries the sdfRequired
keyword is declared to be mandatory to be represented.

 Note that referenceable-names are not
subject to the encoding JSON Pointers require as discussed in .
To ensure that referenceable-names are reliably distinguished from JSON Pointers,
they are defined such that they cannot contain ":" or
"#" characters (see rule referenceable-name in).
(If these characters are indeed contained in a Given Name, a JSON
Pointer needs to be formed instead in order to reference it in "sdfRequired",
potentially requiring further path elements as well as JSON Pointer
encoding. The need for this is best avoided by choosing Given Names
without these characters.)
 The example in shows two required elements in the sdfObject definition for "temperatureWithAlarm", the sdfProperty "currentTemperature", and the sdfEvent "overTemperatureEvent". The example also shows the use of JSON Pointers with "sdfRef" to use a pre-existing definition for the sdfProperty "currentTemperature" and
for the sdfOutputData produced by the sdfEvent "overTemperatureEvent".

 Using sdfRequired

"sdfObject": {
 "temperatureWithAlarm": {
 "sdfRequired": [
"#/sdfObject/temperatureWithAlarm/sdfProperty/currentTemperature",
"#/sdfObject/temperatureWithAlarm/sdfEvent/overTemperatureEvent"
],
 "sdfData":{
 "temperatureData": {
 "type": "number"
 }
 },
 "sdfProperty": {
 "currentTemperature": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData",
 "writable": false
 }
 },
 "sdfEvent": {
 "overTemperatureEvent": {
 "sdfOutputData": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"
 }
 }
 }
 }
}

 In , the same sdfRequired can also be represented in
short form:

 "sdfRequired": ["currentTemperature", "overTemperatureEvent"]

 Or, for instance, "overTemperatureEvent" could carry:

 "overTemperatureEvent": {
 "sdfRequired": [true],
 "...": "..."
 }

 Common Qualities
 Definitions in SDF share a number of qualities that provide metadata for
them. These are listed in . None of these
qualities are required or have default values that are assumed if the
quality is absent.
If a short textual description is required for an application and no
label is given in the SDF model, applications could use
the last part (the last reference-token,) of
the JSON Pointer to the definition in its place.

 Common Qualities

 Quality
 Type
 Description

 description
 string
 long text (no constraints)

 label
 string
 short text (no constraints)

 $comment
 string
 source code comments only, no semantics

 sdfRef
 sdf-pointer
 (see)

 sdfRequired
 pointer-list
 (see , used in affordances or groupings)

 Data Qualities
 Data qualities are used in sdfData and sdfProperty definitions,
which are named sets of data qualities (abbreviated as named-sdq).
 These qualities include the common qualities, JSO-inspired qualities
(see below), and data qualities defined specifically for the present
specification; the latter are shown in .
 lists data qualities inspired by the various
proposals at json-schema.org; the
intention is that these (information model-level) qualities are
compatible with the (data model) semantics from the
versions of the json-schema.org proposal they were imported from.

 SDF-Defined Qualities of sdfData and sdfProperty

 Quality
 Type
 Description
 Default

 (common)

 unit
 string
 unit name (note 1)
 N/A

 nullable
 boolean
 indicates a null value is available for this type
 true

 contentFormat
 string
 content type (IANA media type string plus parameters), encoding (note 2)
 N/A

 sdfType
 string ()
 sdfType enumeration (extensible)
 N/A

 sdfChoice
 named set of data qualities ()
 named alternatives
 N/A

 enum
 array of strings
 abbreviation for string-valued named alternatives
 N/A

 The unit name SHOULD be as per the "SenML
Units" registry or the "Secondary Units" registry in as specified by Sections and of and , respectively.

Exceptionally, if a registration in these registries cannot be
obtained or would be inappropriate, the unit name can also be a URI
that is pointing to a definition of the unit. Note that SDF
processors are not expected to, and normally SHOULD NOT,
dereference these URIs; the definition pointed to may be useful to
humans, though.
(See for a more extensive discussion of dereferenceable
identifiers).
 A URI unit name is distinguished from a registered unit name by the
presence of a colon; therefore, any registered unit names that contain a colon (at
the time of writing, none) cannot be directly used in SDF.

For use by translators into ecosystems that require URIs for unit
names, the URN sub-namespace "urn:ietf:params:unit" is provided
().
URNs from this sub-namespace MUST NOT be used in a
 unit quality in favor of simply notating the unit name (such as
 kg instead of urn:ietf:params:unit:kg) except where the
unit name contains a colon and can therefore not be directly used
in SDF.

 The contentFormat quality follows the Content-Format-Spec as defined in
 , allowing for expressing both numeric and string
based Content-Formats.

 sdfType
 SDF defines a number of basic types beyond those provided by JSON or
JSO. These types are identified by the sdfType quality, which
is a text string from a set of type names defined by the "sdfType
values" registry in the "Semantic Definition Format (SDF)" registry group
().
The sdfType name is composed of lowercase ASCII letters, digits,
and - (ASCII hyphen/minus) characters, starting
with a lowercase ASCII letter (i.e., using a pattern of
"⁠ [a-z][-a-z0-9]*") and typically employing kebab-case for
names constructed out of multiple words .
 To aid interworking with JSO implementations, it is RECOMMENDED
that sdfType is always used in conjunction with the type quality
inherited from in such a way as to yield a common
representation of the type's values in JSON.
 Values for sdfType that are defined in this specification are shown in
 .
This table also gives a description of the semantics of the sdfType,
the conventional value for type to be used with the sdfType value,
and a conventional JSON representation for values of the type.
The type and the JSON representation are chosen to be consistent
with each other; this MUST be true for additionally registered sdfType
values as well.

 Values Defined in Base SDF for the sdfType Quality

 Name
 Description
 type
 JSON Representation
 Reference

 byte-string
 A sequence of zero or more bytes
 string
 base64url without padding
 Section of RFC 8949

 unix-time
 A point in civil time (note 1)
 number
 POSIX time
 Section of RFC 8949

 (1) Note that the definition of unix-time does not imply the
capability to represent points in time that fall on leap seconds.
More date/time-related sdfTypes are likely to be added in the sdfType
value registry.

 sdfChoice
 Data can be a choice of named alternatives called sdfChoice.
Each alternative is identified by a name (string, key in the outer JSON
map used to represent the overall choice) and a set of dataqualities
(each in an inner JSON map, the value used to represent the
individual alternative in the outer JSON map).
Dataqualities that are specified at the same level as the sdfChoice
apply to all choices in the sdfChoice except those specific choices
where the dataquality is overridden at the choice level.
 sdfChoice merges the functions of two constructs found in :

 enum

What could be expressed as:

"enum": ["foo", "bar", "baz"]

in JSO, is often best represented as:

"sdfChoice": {
 "foo": { "description": "This is a foonly"},
 "bar": { "description":
 "As defined in the second world congress"},
 "baz": { "description": "From bigzee foobaz"}
}

This allows the placement of other dataqualities such as
 description in the example.

If an enum needs to use a data type different from the text string,
what would, for instance, have been:

"type": "number",
"enum": [1, 2, 3]

in JSO, is represented as:

"type": "number",
"sdfChoice": {
 "a-better-name-for-alternative-1": { "const": 1 },
 "alternative-2": { "const": 2 },
 "the-third-alternative": { "const": 3 }
}

where the string names obviously would be chosen in a way that is
descriptive for what these numbers actually stand for; sdfChoice
also makes it easy to add number ranges into the mix.

(Note that const can also be used for strings as in the previous
example, for instance, if the actual string value is indeed a crucial
element for the data model.)

 anyOf

JSO provides a type union called anyOf, which provides a
choice between anonymous alternatives.

What could have been in JSO:

"anyOf": [
 {"type": "array", "minItems": 3, "maxItems": "3",
 "items": {"$ref": "#/sdfData/rgbVal"}},
 {"type": "array", "minItems": 4, "maxItems": "4",
 "items": {"$ref": "#/sdfData/cmykVal"}}
]

can be more descriptively notated in SDF as:

"sdfChoice": {
 "rgb": {"type": "array", "minItems": 3, "maxItems": "3",
 "items": {"sdfRef": "#/sdfData/rgbVal"}},
 "cmyk": {"type": "array", "minItems": 4, "maxItems": "4",
 "items": {"sdfRef": "#/sdfData/cmykVal"}}
}

 Note that there is no need in SDF for the type intersection construct
 allOf or the peculiar type-xor construct oneOf found in .
 As a simplification for users of SDF models who are accustomed to
the JSO enum keyword, this is retained, but limited to a choice
of text string values, such that:

"enum": ["foo", "bar", "baz"]

 is syntactic sugar for:

"sdfChoice": {
 "foo": { "const": "foo"},
 "bar": { "const": "bar"},
 "baz": { "const": "baz"}
}

 In a single definition, the keyword enum cannot be used at the same
time as the keyword sdfChoice, as the former is just syntactic
sugar for the latter.

 Keywords for Definition Groups
 The following SDF keywords are used to create definition groups in the target namespace.
All these definitions share some common qualities as discussed in .

 sdfObject
 The sdfObject keyword denotes a group of zero or more sdfObject definitions.
sdfObject definitions may contain or include definitions of named Properties, Actions, and Events declared for the sdfObject, as well as named data types (sdfData group) to be used in this or other sdfObjects.
 The qualities of an sdfObject include the common qualities;
additional qualities are shown in .
None of these
qualities are required or have default values that are assumed if the
quality is absent.

 Qualities of sdfObject

 Quality
 Type
 Description

 (common)

 sdfProperty
 property
 zero or more named property definitions for this sdfObject

 sdfAction
 action
 zero or more named action definitions for this sdfObject

 sdfEvent
 event
 zero or more named event definitions for this sdfObject

 sdfData
 named-sdq
 zero or more named data type definitions that might be used in the above

 minItems
 number
 (array) minimum number of multiplied affordances in array

 maxItems
 number
 (array) maximum number of multiplied affordances in array

 sdfProperty
 The sdfProperty keyword denotes a group of zero or more Property definitions.
 Properties are used to model elements of state.
 The qualities of a Property definition include the data qualities (and
thus the common qualities); see . Additional qualities are shown in .

 Qualities of sdfProperty

 Quality
 Type
 Description
 Default

 (data)

 readable
 boolean
 Reads are allowed
 true

 writable
 boolean
 Writes are allowed
 true

 observable
 boolean
 Flag to indicate asynchronous notification is available
 true

 sdfAction
 The sdfAction keyword denotes a group of zero or more Action definitions.
 Actions are used to model commands and methods that are invoked.
Actions may have parameter data that is supplied upon invocation and
output data that is provided as a direct result of the invocation of
the action (note that "action objects" may also be created to furnish
ongoing information during a long-running action; these would be
pointed to by the output data).
 The qualities of an Action definition include the common qualities. Additional qualities are shown in . None of these qualities are required or have default values that are assumed if the quality is absent.

 Qualities of sdfAction

 Quality
 Type
 Description

 (common)

 sdfInputData
 map
 data qualities of the input data for an Action

 sdfOutputData
 map
 data qualities of the output data for an Action

 sdfData
 named-sdq
 zero or more named data type definitions that might be used in the above

 sdfInputData defines the input data of the action. sdfOutputData
defines the output data of the action.
As discussed in , a set of data qualities with
type " object" can be used to substructure either data item, with
optionality indicated by the data quality required.

 sdfEvent
 The sdfEvent keyword denotes zero or more Event definitions.
 Events are used to model asynchronous occurrences that may be communicated proactively. Events have data elements that are communicated upon the occurrence of the event.
 The qualities of sdfEvent include the common qualities. Additional qualities are shown in . None of these qualities are required or have default values that are assumed if the quality is absent.

 Qualities of sdfEvent

 Quality
 Type
 Description

 (common)

 sdfOutputData
 map
 data qualities of the output data for an Event

 sdfData
 named-sdq
 zero or more named data type definitions that might be used in the above

 sdfOutputData defines the output data of the action.
As discussed in , a set of data qualities with
type " object" can be used to substructure the output data item, with
optionality indicated by the data quality required.

 sdfData
 The sdfData keyword denotes a group of zero or more named data type
definitions (named-sdq).
 An sdfData definition provides a reusable semantic identifier for a
type of data item and describes the constraints on the defined type.
sdfData is not itself a declaration, so it does not cause any of these
data items to be included in an affordance definition.
 The qualities of sdfData include the data qualities (and thus the common qualities); see .

 High-Level Composition
 The requirements for high-level composition include the following:

 The ability to represent products, standardized product types, and modular products while maintaining the atomicity of sdfObjects.

 The ability to compose a reusable definition block from sdfObjects.
Example: a single plug unit of an outlet strip with sdfObjects
for on/off control, energy monitor, and optional dimmer, while
retaining the atomicity of the individual sdfObjects.

 The ability to compose sdfObjects and other definition blocks into a higher level sdfThing that represents a product, while retaining the atomicity of sdfObjects.

 The ability to enrich and refine a base definition to have
product-specific qualities and quality values, such as unit, range, and scale settings.

 The ability to reference items in one part of a complex definition
from another part of the same definition.
Example: summarizing the energy readings from all plugs in an outlet
strip.

 Paths in the Model Namespaces
 The model namespace is organized according to terms that are defined
in the SDF documents that contribute to the namespace. For example, definitions that originate from an organization or vendor are expected to be in a namespace that is specific to that organization or vendor.
 The structure of a path in a namespace is defined by the JSON Pointers
to the definitions in the SDF documents in that namespace.
For example, if there is an SDF document defining an sdfObject " Switch"
with an action " on", then the reference to the action would be
" ns:#/sdfObject/Switch/sdfAction/on", where ns is the namespace prefix
(short name for the namespace).

 Modular Composition
 Modular composition of definitions enables an existing definition
(which could be in the same or another SDF document) to become part of a new definition by including a reference to the existing definition within the model namespace.

 Use of the "sdfRef" Keyword to Reuse a Definition
 An existing definition may be used as a template for a new definition, that is, a new definition is created in the target namespace that uses the defined qualities of some existing definition.
This pattern uses the keyword sdfRef as a quality of a new definition with a value consisting of a reference to the existing definition that is to be used as a template.
 In the definition that uses sdfRef, new qualities may be added
and existing qualities from the referenced definition may be
overridden. (Note that JSON maps do not have a defined
order, so the SDF processor may see these overrides before seeing the
 sdfRef.)
 Note that the definition referenced by sdfRef might contain
qualities or definitions that are not valid in the context where the
 sdfRef is used.
In this case, the resulting model, when resolved, may be invalid.
Example: an sdfRef adds an sdfThing definition in an sdfObject
definition.
 As a convention, overrides are intended to be used only for further
restricting the allowable set of data values.
Such a usage is shown in : any value allowable for a
 cable-length is also an allowable value for a length, with the
additional restriction that the length cannot be smaller than 5 cm.
(This is labeled as a convention as it cannot be checked in the
general case.
A quality of implementation consideration for a tool
might be to provide at least some form of checking.)
Note that the example provides a description that overrides the
 description of the referenced definition; as this quality is
intended for human consumption, there is no conflict with the intended
goal.

 Using an Override to Further Restrict the Set of Data Values

"sdfData":
 "length" : {
 "type": "number",
 "minimum": 0,
 "unit": "m"
 "description": "There can be no negative lengths."
 }
...
 "cable-length" : {
 "sdfRef": "#/sdfData/length"
 "minimum": 5e-2,
 "description": "Cables must be at least 5 cm."
 }

 sdfThing
 An sdfThing is a set of declarations and qualities that may be part of
a more complex model.
For example, the sdfObject declarations that make
up the definition of a single socket of an outlet strip could be
encapsulated in an sdfThing, which itself could be used in a declaration in the sdfThing definition for the outlet strip.
(See in for parts
of an SDF model for this example.)
 sdfThing definitions carry semantic meaning, such as a defined refrigerator compartment and a defined freezer compartment, making up a combination refrigerator-freezer product.
An sdfThing may be composed of sdfObjects and other sdfThings.
It can also contain sdfData definitions, as well as declarations of interaction affordances itself, such
as a status (on/off) for the refrigerator-freezer as a whole (see
 in for an example SDF
model illustrating these aspects).
 The qualities of sdfThing are shown in .
None of these qualities are required or have default values that are assumed if the quality is absent. Analogous to sdfObject, the presence of one or both of the optional
qualities " minItems" and " maxItems" defines the sdfThing as an
array.

 Qualities of sdfThing

 Quality
 Type
 Description

 (common)

 sdfThing
 thing

 sdfObject
 object

 sdfProperty
 property
 zero or more named property definitions for this thing

 sdfAction
 action
 zero or more named action definitions for this thing

 sdfEvent
 event
 zero or more named event definitions for this thing

 sdfData
 named-sdq
 zero or more named data type definitions that might be used in the above

 minItems
 number
 (array) minimum number of multiplied affordances in array

 maxItems
 number
 (array) maximum number of multiplied affordances in array

 IANA Considerations

 Media Type
 IANA has added the following Media-Type to the "Media Types"
registry .

 Media Type Registration for SDF

 Name
 Template
 Reference

 sdf+json
 application/sdf+json
 RFC 9880,

 Type name:
 application
 Subtype name:
 sdf+json
 Required parameters:
 N/A
 Optional parameters:
 N/A
 Encoding considerations:
 binary (JSON is UTF-8-encoded
 text)
 Security considerations:

 of
 RFC 9880
 Interoperability considerations:
 none
 Published specification:

 of RFC 9880
 Applications that use this media type:
 Tools for data and interaction modeling in the Internet of
 Things and related environments.
 Fragment identifier considerations:
 A JSON Pointer fragment identifier may be used as defined in
 .
 Additional information:

 Magic number(s):
 n/a
 File extension(s):
 .sdf.json
 Windows Clipboard Name:
 "Semantic Definition Format (SDF) for Data and Interactions of Things"
 Macintosh file type code(s):
 n/a
 Macintosh Universal Type Identifier code:
 org.ietf.sdf-json conforms to public.text

 Person & email address to contact for further information:
 ASDF WG mailing list (asdf@ietf.org) or IETF Applications and
 Real-Time Area (art@ietf.org)
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author/Change controller:
 IETF
 Provisional registration:
 no

 Content-Format
 IANA has added the following Content-Format to the "CoAP
Content-Formats" registry
within the "Constrained RESTful Environments (CoRE) Parameters"
registry group .

 SDF Content-Format Registration

 Content Type
 Content Coding
 ID
 Reference

 application/sdf+json
 -
 434
 RFC 9880

 IETF URN Sub-Namespace for Unit Names (urn:ietf:params:unit)
 IANA has registered the following value in the "IETF URN Sub-namespace for Registered Protocol Parameter Identifiers" registry in , following the template in
 :

 Registry name:

 unit

 Specification:

 RFC 9880

 Repository:

 Combining the symbol values from the "SenML Units" registry and the "Secondary Units" registry in the "Sensor Measurement Lists (SenML)" registry group as specified by Sections and of and ,
respectively (which, by the registration policy, are guaranteed to be
non-overlapping).

 Index value:

 Percent-encoding (Section of RFC 3986) is required of any
characters in unit names except for the set " unreserved" (Section of RFC 3986), the set " sub-delims" (Section of RFC 3986), and " :" or " @" (i.e., the result must match the ABNF
rule " pchar" in Section of RFC 3986).

 SenML Registry Group
 IANA has added the following note to the "Sensor Measurement Lists (SenML)" registry group :

 In SDF [RFC9880], a URI unit name is distinguished from a registered unit name
 by the presence of a colon; any registered unit name that contains
 a colon can therefore not be directly used in SDF.

 Registries
 IANA has created the "Semantic Definition Format (SDF)" registry group with the
registries defined in this Section.

 SDF Quality Names
 IANA has created the "SDF Quality Names" registry in
the "Semantic Definition Format (SDF)" registry group with the following template:

 Name:

 A Quality Name composed of ASCII letters, digits, and dollar signs, starting
with a lowercase ASCII letter or a dollar sign (i.e., using a
pattern of "⁠ [a-z$][A-Za-z$0-9]*").

 Brief Description:

 A brief description.

 Reference:

 A pointer to a specification.

 Change Controller:

 (See Section of RFC 8126)

 Quality Names in this registry are intended to be registered in
conjunction with RFCs and activities of the IETF.
 The registration policy is Specification Required as per Section of RFC 8126 .
Note that the policy is not "RFC Required" or "IETF Review" (Sections and of RFC 8126) so that registrations can be made earlier
in the process, even earlier than foreseen in .)
 The instructions to the Experts are:

 to ascertain that the specification is available in an immutable
reference and has achieved a good level of review in conjunction with
RFCs or activities of the IETF, and

 to be frugal in the allocation of Quality Names that are suggestive
of generally applicable semantics, keeping them in reserve for
qualities that are likely to enjoy wide use and can make good use of
their conciseness.

 The "SDF Quality Names" registry starts out as in
 ; all references for these initial entries are to
RFC 9880 (this document) and all change controllers are "IETF".

 Initial Content of the SDF Quality Names Registry

 Name
 Brief Description

 $comment
 source code comments only, no semantics

 const
 constant value

 contentFormat
 content format

 default
 default value

 description
 long description text

 enum
 sdfChoice limited to text strings

 exclusiveMaximum
 exclusive maximum for a number

 exclusiveMinimum
 exclusive minimum for a number

 format
 specific format for a text string

 items
 items of an array

 label
 short text (no constraints); defaults to key

 maxItems
 maximum number of items in an array

 maxLength
 maximum length for a text string (in characters, i.e., Unicode scalar values)

 maximum
 maximum for a number

 minItems
 minimum number of items in an array

 minLength
 minimum length for a text string (in characters, i.e., Unicode scalar values)

 minimum
 minimum for a number

 multipleOf
 step size of number

 nullable
 boolean: can the item be left out?

 observable
 boolean: can the item be observed?

 pattern
 regular expression pattern for a text string

 properties
 named dataqualities for type="object"

 readable
 boolean: can the item be read?

 required
 which data items are required?

 sdfChoice
 named dataqualities for a choice

 sdfData
 named dataqualities for an independent data type definition

 sdfInputData
 input data to an action

 sdfOutputData
 output data of an action or event (sdfRequired applies here)

 sdfRef
 sdf-pointer to definition being referenced

 sdfRequired
 pointer-list to declarations of required components

 sdfRequiredInputData
 pointer-list to declarations of required input data for an action

 sdfType
 more detailed information about the type of a string

 type
 general category of data type

 uniqueItems
 boolean: do the items of the array need to be all different?

 unit
 engineering unit and scale (per SenML registry)

 writable
 boolean: can the item be written to?

 SDF Quality Name Prefixes
 IANA has created the "SDF Quality Name Prefixes" registry in
the "Semantic Definition Format (SDF)" registry group with the following template:

 Prefix:

 A Quality Name prefix composed of lowercase ASCII letters and digits, starting
with a lowercase ASCII letter (i.e., using a pattern of "⁠ [a-z][a-z0-9]*").

 Contact:

 A contact point for the organization that assigns Quality Names with
this prefix.

 Reference:

 A pointer to additional information, if available.

 Quality Name Prefixes are intended to be registered by organizations
that plan to define Quality Names constructed with an
organization-specific prefix ().
 The registration policy is Expert Review as per Section of RFC 8126 .
The instructions to the Expert are to ascertain that the organization
will handle Quality Names constructed using their prefix in a way that
roughly achieves the objectives for an IANA registry that supports
interoperability of SDF models employing these Quality Names,
including:

 Stability, "stable and permanent";

 Transparency, "readily available" and "in sufficient detail" (Section of RFC 8126).

 The "SDF Quality Name Prefixes" registry is empty at this time.

 sdfType Values
 IANA has created the "sdfType Values" registry in
the "Semantic Definition Format (SDF)" registry group with the following template:

 Name:

 A name composed of lowercase ASCII letters, digits and - (ASCII
hyphen/minus) characters, starting with a lowercase ASCII letter
(i.e., using a pattern of "⁠ [a-z][-a-z0-9]*").

 Description:

 A short description of the information model level structure and semantics.

 type:

 The value of the quality "type" to be used with this sdfType.

 JSON Representation:

 A short description of a JSON representation that can be used for
this sdfType. As per , this MUST be consistent with the type.

 Reference:

 A more detailed specification of meaning and use of sdfType.

 sdfType values are intended to be registered to enable modeling additional
SDF-specific types (see).
 The registration policy is Specification Required as per Section of RFC 8126 . The instructions to the Expert are to ascertain that the
specification provides enough detail to enable interoperability
between implementations of the sdfType being registered, and that
names are chosen with enough specificity that ecosystem-specific
sdfTypes will not be confused with more generally applicable ones.
 The initial set of registrations is described in .

 SDF Feature Names
 IANA has created the "SDF Feature Names" registry in the "Semantic
Definition Format (SDF)" registry group with the following template:

 Name:

 A feature name composed of ASCII letters, digits, and dollar signs, starting
with a lowercase ASCII letter or a dollar sign (i.e., using a
pattern of "⁠ [a-z$][A-Za-z$0-9]*").

 Brief Description:

 A brief description.

 Reference:

 A pointer to a specification.

 Change Controller:

 (See Section of RFC 8126)

 The registration policy is Specification Required as per Section of RFC 8126 .
 The instructions to the Experts are:

 to ascertain that the specification is available in an immutable
reference and has achieved a good level of review, and

 to be frugal in the allocation of feature names that are suggestive
of generally applicable semantics, keeping them in reserve for
features that are likely to enjoy wide use and can make good use of
their conciseness.

 The "SDF Feature Names" registry is empty at this time.

 Security Considerations
 Some wider security considerations applicable to Things are discussed
in .
 gives an overview over security considerations
that arise when formal description techniques are used to govern
interoperability; analogs of these security considerations can apply
to SDF.
 The security considerations of underlying building blocks such as
those detailed in Section of RFC 3629 apply.
 SDF uses JSON as a representation language.
For a number of
cases, indicates that implementation behavior for certain constructs
allowed by the JSON grammar is unpredictable.
 Implementations need to be robust against invalid or unpredictable
cases on input, preferably by rejecting input that is invalid or
that would lead to unpredictable behavior, and avoid generating
these cases on output.
 Implementations of model languages may also exhibit
performance-related availability issues when the attacker can control
the input, see for a brief discussion and
 for considerations specific to the use
of pattern.
 SDF may be used in two processes that are often security relevant: (1) model-based validation of data that is intended to be described by SDF models, and (2) model-based augmentation of these data with information obtained from the SDF models that apply.
 Implementations need to ascertain the provenance (and thus
authenticity and integrity) and applicability of
the SDF models they employ operationally in such security-relevant ways.
Implementations that make use of the composition mechanisms defined in this
document need to do this for each of the components they combine
into the SDF models they employ.
Essentially, this process needs to undergo the same care and scrutiny
as any other introduction of source code into a build environment; the
possibility of supply-chain attacks on the modules imported needs to
be considered.
 Specifically, implementations might rely on model-based input
validation for enforcing certain characteristics of the data structure
ingested (which, if not validated, could lead to malfunctions such as
crashes and remote code execution).
These implementations need to be particularly careful
about the data models they apply, including their provenance and
potential changes of these characteristics that upgrades to the referenced
modules may (inadvertently or as part of an attack) cause.
More generally speaking, implementations should strive to be robust
against expected and unexpected limitations of the model-based input
validation mechanisms and their implementations.
 Similarly, implementations that rely on model-based augmentation may
generate false data from their inputs; this is an integrity violation
in any case, but also can possibly be exploited for further attacks.
 In applications that dynamically acquire models and obtain modules
from module references in these models, the security considerations of
dereferenceable identifiers apply (see for a more extensive
discussion of dereferenceable identifiers).
 There may be confidentiality requirements on SDF models, both on their
content and on the fact that a specific model is used in a particular
Thing or environment.
The present specification does not discuss model discovery or define
an access control model for SDF models, nor does it define a way to
obtain selective disclosure where that may be required.
It is likely that these definitions require additional context from
underlying ecosystems and the characteristics of the protocols
employed there; therefore, this is left as future work (e.g., for
documents such as).

 References

 Normative References

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 An IETF URN Sub-namespace for Registered Protocol Parameters

 This document describes a new sub-delegation for the 'ietf' URN namespace for registered protocol items. The 'ietf' URN namespace is defined in RFC 2648 as a root for persistent URIs that refer to IETF- defined resources. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Constrained RESTful Environments (CoRE) Parameters

 IANA

 Media Types

 IANA

 Uniform Resource Name (URN) Namespace for IETF Use

 IANA

 Sensor Measurement Lists (SenML)

 IANA

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Date and Time on the Internet: Timestamps

 This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.

 JavaScript Object Notation (JSON) Pointer

 JSON Pointer defines a string syntax for identifying a specific value within a JavaScript Object Notation (JSON) document.

 JSON Merge Patch

 This specification defines the JSON merge patch format and processing rules. The merge patch format is primarily intended for use with the HTTP PATCH method as a means of describing a set of modifications to a target resource's content.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Sensor Measurement Lists (SenML)

 This specification defines a format for representing simple sensor measurements and device parameters in Sensor Measurement Lists (SenML). Representations are defined in JavaScript Object Notation (JSON), Concise Binary Object Representation (CBOR), Extensible Markup Language (XML), and Efficient XML Interchange (EXI), which share the common SenML data model. A simple sensor, such as a temperature sensor, could use one of these media types in protocols such as HTTP or the Constrained Application Protocol (CoAP) to transport the measurements of the sensor or to be configured.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Additional Units for Sensor Measurement Lists (SenML)

 The Sensor Measurement Lists (SenML) media type supports the indication of units for a quantity represented. This short document registers a number of additional unit names in the IANA registry for units in SenML. It also defines a registry for secondary units that cannot be in SenML's main registry, as they are derived by linear transformation from units already in that registry.

 Additional Control Operators for the Concise Data Definition Language (CDDL)

 The Concise Data Definition Language (CDDL), standardized in RFC 8610, provides "control operators" as its main language extension point.
 The present document defines a number of control operators that were not yet ready at the time RFC 8610 was completed:.plus,.cat, and.det for the construction of constants;.abnf/.abnfb for including ABNF (RFC 5234 and RFC 7405) in CDDL specifications; and.feature for indicating the use of a non-basic feature in an instance.

 Sensor Measurement Lists (SenML) Fields for Indicating Data Value Content-Format

 The Sensor Measurement Lists (SenML) media types support multiple types of values, from numbers to text strings and arbitrary binary Data Values. In order to facilitate processing of binary Data Values, this document specifies a pair of new SenML fields for indicating the content format of those binary Data Values, i.e., their Internet media type, including parameters as well as any content codings applied.

 Universally Unique IDentifiers (UUIDs)

 This specification defines UUIDs (Universally Unique IDentifiers) --
also known as GUIDs (Globally Unique IDentifiers) -- and a Uniform
Resource Name namespace for UUIDs. A UUID is 128 bits long and is
intended to guarantee uniqueness across space and time. UUIDs were
originally used in the Apollo Network Computing System (NCS), later
in the Open Software Foundation's (OSF's) Distributed Computing
Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the OSF DCE specification with the
kind permission of the OSF (now known as "The Open Group"). Information from earlier versions of the OSF DCE specification have
been incorporated into this document. This document obsoletes RFC
4122.

 SPDX License List

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 ASCII format for network interchange

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 CURIE Syntax 1.0

 W3C Working Group Note

 Informative References

 Early IANA Allocation of Standards Track Code Points

 This memo describes the process for early allocation of code points by IANA from registries for which "Specification Required", "RFC Required", "IETF Review", or "Standards Action" policies apply. This process can be used to alleviate the problem where code point allocation is needed to facilitate desired or required implementation and deployment experience prior to publication of an RFC, which would normally trigger code point allocation. The procedures in this document are intended to apply only to IETF Stream documents.

 Camel Case

 The "dereferenceable identifier" pattern

 Universität Bremen TZI

 In a protocol or an application environment, it is often important to be able to create unambiguous identifiers for some meaning (concept or some entity). Due to the simplicity of creating URIs, these have become popular for this purpose. Beyond the purpose of identifiers to be uniquely associated with a meaning, some of these URIs are in principle _dereferenceable_, so something can be placed that can be retrieved when encountering such a URI.

 Work in Progress

 ECMAScript 2025 Language Specification

 Ecma International

 16th Edition

 JSON Schema: core definitions and terminology

 SitePen (USA)

 Work in Progress

 JSON Schema: interactive and non interactive validation

 SitePen (USA)

 JSON Schema (application/schema+json) has several purposes, one of which is instance validation. The validation process may be interactive or non interactive. For instance, applications may use JSON Schema to build a user interface enabling interactive content generation in addition to user input checking, or validate data retrieved from various sources. This specification describes schema keywords dedicated to validation purposes.

 Work in Progress

 JSON Schema: A Media Type for Describing JSON Documents

 Wellcome Sanger Institute

 Work in Progress

 JSON Schema Validation: A Vocabulary for Structural Validation of JSON

 Wellcome Sanger Institute

 Work in Progress

 Kebab Case

 OCF Resource Type Specification

 Open Connectivity Foundation

 Version 2.2.7

 LwM2M OBJECTS

 Open Mobile Alliance

 Guidance on RESTful Design for Internet of Things Systems

 Ericsson

 Siemens

 This document gives guidance for designing Internet of Things (IoT) systems that follow the principles of the Representational State Transfer (REST) architectural style. This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

 Work in Progress

 Internet of Things (IoT) Security: State of the Art and Challenges

 The Internet of Things (IoT) concept refers to the usage of standard Internet protocols to allow for human-to-thing and thing-to-thing communication. The security needs for IoT systems are well recognized, and many standardization steps to provide security have been taken -- for example, the specification of the Constrained Application Protocol (CoAP) secured with Datagram Transport Layer Security (DTLS). However, security challenges still exist, not only because there are some use cases that lack a suitable solution, but also because many IoT devices and systems have been designed and deployed with very limited security capabilities. In this document, we first discuss the various stages in the lifecycle of a thing. Next, we document the security threats to a thing and the challenges that one might face to protect against these threats. Lastly, we discuss the next steps needed to facilitate the deployment of secure IoT systems. This document can be used by implementers and authors of IoT specifications as a reference for details about security considerations while documenting their specific security challenges, threat models, and mitigations.
 This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

 I-Regexp: An Interoperable Regular Expression Format

 This document specifies I-Regexp, a flavor of regular expression that is limited in scope with the goal of interoperation across many different regular expression libraries.

 JSONPath: Query Expressions for JSON

 JSONPath defines a string syntax for selecting and extracting JSON (RFC 8259) values from within a given JSON value.

 Semantic Definition Format (SDF): Mapping files

 Universität Bremen TZI

 Universität Bremen

 The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and maintenance of data and interaction models that describe Things, i.e., physical objects that are available for interaction over a network. It was created as a common language for use in the development of the One Data Model liaison organization (OneDM) models. Tools convert this format to database formats and other serializations as needed. An SDF specification often needs to be augmented by additional information that is specific to its use in a particular ecosystem or application. SDF mapping files provide a mechanism to represent this augmentation.

 Work in Progress

 An sdfType for Links

 Universität Bremen TZI

 Ericsson

 This document defines and registers an sdfType "link" for the Semantic Definition Format (SDF) for Data and Interactions of Things (draft-ietf-asdf-sdf).

 Work in Progress

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 Web of Things (WoT) Thing Description 1.1

 Chapter 6 - The ZigBee Cluster Library

 Zigbee Wireless Networking, pp. 239-271

 Formal Syntax of SDF
 This normative appendix describes the syntax of SDF using CDDL .
 This appendix shows the framework syntax only, i.e., a syntax with liberal extension points.
Since this syntax is nearly useless in finding typos in an SDF
specification, a second syntax, the validation syntax, is defined that
does not include the extension points.
The validation syntax can be generated from the framework syntax by
leaving out all lines containing the string EXTENSION-POINT; as this
is trivial, the result is not shown here.
 This appendix makes use of CDDL "features" as defined in .
Features whose names end in "-ext" indicate extension points for
further evolution.

start = sdf-syntax

sdf-syntax = {
 ; info will be required in most process policies
 ? info: sdfinfo
 ? namespace: named<text>
 ? defaultNamespace: text
 ; Thing is a composition of objects that work together in some way
 ? sdfThing: named<thingqualities>
 ; Object is a set of Properties, Actions, and Events that together
 ; perform a particular function
 ? sdfObject: named<objectqualities>
 ; Includes Properties, Actions, and Events as well as sdfData
 paedataqualities
 * $$SDF-EXTENSION-TOP
 EXTENSION-POINT<"top-ext">
}

sdfinfo = {
 ? title: text
 ? description: text
 ? version: text
 ? copyright: text
 ? license: text
 ? modified: modified-date-time
 ? features: [
 * (any .feature "feature-name") ; EXTENSION-POINT
]
 optional-comment
 * $$SDF-EXTENSION-INFO
 EXTENSION-POINT<"info-ext">
}

; Shortcut for a map that gives names to instances of X
; (has keys of type text and values of type X)
named<X> = { * text => X }

; EXTENSION-POINT is only used in framework syntax
EXTENSION-POINT<f> = (* (quality-name .feature f) => any)
quality-name = text .regexp "([a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*"

sdf-pointer = global / same-object / true
global = text .regexp ".*[:#].*" ; rough CURIE or JSON Pointer syntax
same-object = referenceable-name
referenceable-name = text .regexp "[^:#]*"

; per se no point in having an empty list, but used for sdfRequired
; in odmobject-multiple_axis_joystick.sdf.json
pointer-list = [* sdf-pointer]

optional-comment = (
 ? $comment: text ; source code comments only, no semantics
)

commonqualities = (
 ? description: text ; long text (no constraints)
 ? label: text ; short text (no constraints); default to key
 optional-comment
 ? sdfRef: sdf-pointer
 ; applies to qualities of properties, of data:
 ? sdfRequired: pointer-list
)

arraydefinitionqualities = (
 ? "minItems" => uint
 ? "maxItems" => uint
)

paedataqualities = (
 ; Property represents the state of an instance of an object
 ? sdfProperty: named<propertyqualities>
 ; Action invokes an application layer verb associated with an object
 ? sdfAction: named<actionqualities>
 ; Event represents an occurrence of event associated with an object
 ? sdfEvent: named<eventqualities>
 ; Data represents a piece of information that can be the state of a
 ; property or a parameter to an action or a signal in an event
 ? sdfData: named<dataqualities>

)

; for building hierarchy
thingqualities = {
 commonqualities
 ? sdfObject: named<objectqualities>
 ? sdfThing: named<thingqualities>
 paedataqualities
 arraydefinitionqualities
 * $$SDF-EXTENSION-THING
 EXTENSION-POINT<"thing-ext">
}

; for single objects, or for arrays of objects
objectqualities = {
 commonqualities
 paedataqualities
 arraydefinitionqualities
 * $$SDF-EXTENSION-OBJECT
 EXTENSION-POINT<"object-ext">
}

parameter-list = dataqualities

actionqualities = {
 commonqualities
 ? sdfInputData: parameter-list ; sdfRequiredInputData applies here
 ? sdfOutputData: parameter-list ; sdfRequired applies here
 ; zero or more named data type definitions that might be used above
 ? sdfData: named<dataqualities>
 * $$SDF-EXTENSION-ACTION
 EXTENSION-POINT<"action-ext">
}

eventqualities = {
 commonqualities
 ? sdfOutputData: parameter-list ; sdfRequired applies here
 ; zero or more named data type definitions that might be used above
 ? sdfData: named<dataqualities>
 * $$SDF-EXTENSION-EVENT
 EXTENSION-POINT<"event-ext">
}

sdftype-name = text .regexp "[a-z][-a-z0-9]*" ; EXTENSION-POINT

dataqualities = {
 commonqualities
 jsonschema
 ? "unit" => text
 ? nullable: bool
 ? "sdfType" => "byte-string" / "unix-time"
 / $SDF-EXTENSION-SDFTYPE .within sdftype-name
 / (sdftype-name .feature "sdftype-ext") ; EXTENSION-POINT
 ? contentFormat: text
 * $$SDF-EXTENSION-DATA
 EXTENSION-POINT<"data-ext">
}

propertyqualities = {
 ? observable: bool
 ? readable: bool
 ? writable: bool
 * $$SDF-EXTENSION-PROPERTY
 ~dataqualities
}

allowed-types = number / text / bool / null
 / [* number] / [* text] / [* bool]
 / {* text => any}
 / $SDF-EXTENSION-ALLOWED
 / (any .feature "allowed-ext") ; EXTENSION-POINT

compound-type = (
 "type" => "object"
 ? required: [+text]
 ? properties: named<dataqualities>
)

optional-choice = (
 ? (("sdfChoice" => named<dataqualities>)
 // ("enum" => [+ text])) ; limited to text strings
)

jsonschema = (
 ? (("type" => "number" / "string" / "boolean" / "integer" / "array")
 // compound-type
 // $$SDF-EXTENSION-TYPE
 // (type: text .feature "type-ext") ; EXTENSION-POINT
)
 ; if present, all other qualities apply to all choices:
 optional-choice
 ; the next three should validate against type:
 ? const: allowed-types
 ? default: allowed-types
 ; number/integer constraints
 ? minimum: number
 ? maximum: number
 ? exclusiveMinimum: number
 ? exclusiveMaximum: number
 ? multipleOf: number
 ; text string constraints
 ? minLength: uint
 ? maxLength: uint
 ? pattern: text ; regexp
 ? format: "date-time" / "date" / "time"
 / "uri" / "uri-reference" / "uuid"
 / $SDF-EXTENSION-FORMAT .within text
 / (text .feature "format-ext") ; EXTENSION-POINT
 ; array constraints
 ? minItems: uint
 ? maxItems: uint
 ? uniqueItems: bool
 ? items: jso-items
)

jso-items = {
 ? sdfRef: sdf-pointer ; import limited to subset allowed here...
 ? description: text ; long text (no constraints)
 optional-comment
 ; leave commonqualities out for non-complex data types,
 ; but need the above three.
 ; no further nesting: no "array"
 ? ((type: "number" / "string" / "boolean" / "integer")
 // compound-type
 // $$SDF-EXTENSION-ITEMTYPE
 // (type: text .feature "itemtype-ext") ; EXTENSION-POINT
)
 ; if present, all other qualities apply to all choices
 optional-choice
 ; jso subset
 ? minimum: number
 ? maximum: number
 ? format: text
 ? minLength: uint
 ? maxLength: uint
 * $$SDF-EXTENSION-ITEMS
 EXTENSION-POINT<"items-ext">
 }

modified-date-time = text .abnf modified-dt-abnf
modified-dt-abnf = "modified-dt" .det rfc3339z

; RFC 3339 sans time-numoffset, slightly condensed
rfc3339z = '
 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on
 ; month/year
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap sec
 ; rules
 time-secfrac = "." 1*DIGIT
 DIGIT = %x30-39 ; 0-9

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday

 modified-dt = full-date ["T" partial-time "Z"]
'

 json-schema.org Rendition of SDF Syntax
 This informative appendix describes the syntax of SDF defined in , but
uses a version of the description techniques advertised on
json-schema.org .
 The appendix shows both the validation and the framework syntax.
Since most of the lines are the same between these two files, those lines are shown only once, with a leading space, in the form of a unified diff.
Lines leading with a - are part of the validation syntax and lines leading with a + are part of the framework syntax.

 {
- "title": "sdf-validation.cddl -- Generated: 2025-10-13T08:43:18Z",
+ "title": "sdf-framework.cddl -- Generated: 2025-10-13T08:43:29Z",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$ref": "#/definitions/sdf-syntax",
 "definitions": {
 "sdf-syntax": {
 "type": "object",
 "properties": {
 "info": {
 "$ref": "#/definitions/sdfinfo"
 },
 "namespace": {
 "type": "object",
 "additionalProperties": {
 "type": "string"
 }
 },
 "defaultNamespace": {
 "type": "string"
 },
 "sdfThing": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/thingqualities"
 }
 },
 "sdfObject": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/objectqualities"
 }
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "sdfinfo": {
 "type": "object",
 "properties": {
 "title": {
 "type": "string"
 },
 "description": {
 "type": "string"
 },
 "version": {
 "type": "string"
 },
 "copyright": {
 "type": "string"
 },
 "license": {
 "type": "string"
 },
 "modified": {
 "$ref": "#/definitions/modified-date-time"
 },
 "features": {
- "type": "array",
- "maxItems": 0
+ "type": "array"
 },
 "$comment": {
 "type": "string"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "modified-date-time": {
 "type": "string"
 },
 "thingqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfObject": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/objectqualities"
 }
 },
 "sdfThing": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/thingqualities"
 }
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "sdf-pointer": {
 "anyOf": [
 {
 "$ref": "#/definitions/global"
 },
 {
 "$ref": "#/definitions/same-object"
 },
 {
 "$ref": "#/definitions/true"
 }
]
 },
 "global": {
 "type": "string",
 "pattern": "^[^\\n\\r]*[:#][^\\n\\r]*$"
 },
 "same-object": {
 "$ref": "#/definitions/referenceable-name"
 },
 "referenceable-name": {
 "type": "string",
 "pattern": "^[^:#]*$"
 },
 "true": {
 "type": "boolean",
 "const": true
 },
 "pointer-list": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/sdf-pointer"
 }
 },
 "objectqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfProperty": {
 "$ref": "#/definitions/sdfProperty-"
 },
 "sdfAction": {
 "$ref": "#/definitions/sdfAction-"
 },
 "sdfEvent": {
 "$ref": "#/definitions/sdfEvent-"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "propertyqualities": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "observable": {
+ "type": "boolean"
+ },
+ "readable": {
+ "type": "boolean"
+ },
+ "writable": {
+ "type": "boolean"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "observable": {
 "type": "boolean"
 },
 "readable": {
 "type": "boolean"
 },
 "writable": {
 "type": "boolean"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "observable": {
+ "type": "boolean"
+ },
+ "readable": {
+ "type": "boolean"
+ },
+ "writable": {
+ "type": "boolean"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
 "dataqualities": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "$ref": "#/definitions/type-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "const": {
 "$ref": "#/definitions/allowed-types"
 },
 "default": {
 "$ref": "#/definitions/allowed-types"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "exclusiveMinimum": {
 "type": "number"
 },
 "exclusiveMaximum": {
 "type": "number"
 },
 "multipleOf": {
 "type": "number"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 },
 "pattern": {
 "type": "string"
 },
 "format": {
 "$ref": "#/definitions/format-"
 },
 "minItems": {
 "$ref": "#/definitions/uint"
 },
 "maxItems": {
 "$ref": "#/definitions/uint"
 },
 "uniqueItems": {
 "type": "boolean"
 },
 "items": {
 "$ref": "#/definitions/jso-items"
 },
 "unit": {
 "type": "string"
 },
 "nullable": {
 "type": "boolean"
 },
 "sdfType": {
 "$ref": "#/definitions/sdfType-"
 },
 "contentFormat": {
 "type": "string"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "description": {
+ "type": "string"
+ },
+ "label": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "sdfRequired": {
+ "$ref": "#/definitions/pointer-list"
+ },
+ "const": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "default": {
+ "$ref": "#/definitions/allowed-types"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "exclusiveMinimum": {
+ "type": "number"
+ },
+ "exclusiveMaximum": {
+ "type": "number"
+ },
+ "multipleOf": {
+ "type": "number"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "pattern": {
+ "type": "string"
+ },
+ "format": {
+ "$ref": "#/definitions/format-"
+ },
+ "minItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxItems": {
+ "$ref": "#/definitions/uint"
+ },
+ "uniqueItems": {
+ "type": "boolean"
+ },
+ "items": {
+ "$ref": "#/definitions/jso-items"
+ },
+ "unit": {
+ "type": "string"
+ },
+ "nullable": {
+ "type": "boolean"
+ },
+ "sdfType": {
+ "$ref": "#/definitions/sdfType-"
+ },
+ "contentFormat": {
+ "type": "string"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
 "allowed-types": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "string"
 },
 {
 "type": "boolean"
 },
 {
 "type": "null"
 },
 {
 "type": "array",
 "items": {
 "type": "number"
 }
 },
 {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 {
 "type": "array",
 "items": {
 "type": "boolean"
 }
 },
 {
 "type": "object",
 "additionalProperties": {}
- }
+ },
+ {}
]
 },
 "uint": {
 "type": "integer",
 "minimum": 0
 },
 "jso-items": {
 "anyOf": [
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer"
]
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfChoice": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "sdfChoice": {
+ "$ref": "#/definitions/sdfData-sdfChoice-properties-"
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "description": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "format": {
+ "type": "string"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ }
+ },
+ "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer"
]
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
 },
 {
 "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "properties": {
 "type": {
 "type": "string",
 "const": "object"
 },
 "required": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "properties": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 },
 "enum": {
 "type": "array",
 "items": {
 "type": "string"
 },
 "minItems": 1
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "description": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "minimum": {
 "type": "number"
 },
 "maximum": {
 "type": "number"
 },
 "format": {
 "type": "string"
 },
 "minLength": {
 "$ref": "#/definitions/uint"
 },
 "maxLength": {
 "$ref": "#/definitions/uint"
 }
 },
 "additionalProperties": false
+ },
+ {
+ "type": "object",
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
+ "properties": {
+ "type": {
+ "type": "string"
+ },
+ "enum": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ },
+ "minItems": 1
+ },
+ "sdfRef": {
+ "$ref": "#/definitions/sdf-pointer"
+ },
+ "description": {
+ "type": "string"
+ },
+ "$comment": {
+ "type": "string"
+ },
+ "minimum": {
+ "type": "number"
+ },
+ "maximum": {
+ "type": "number"
+ },
+ "format": {
+ "type": "string"
+ },
+ "minLength": {
+ "$ref": "#/definitions/uint"
+ },
+ "maxLength": {
+ "$ref": "#/definitions/uint"
+ }
+ },
+ "additionalProperties": false
 }
]
 },
+ "sdftype-name": {
+ "type": "string",
+ "pattern": "^[a-z][\\-a-z0-9]*$"
+ },
 "actionqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfInputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfOutputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "parameter-list": {
 "$ref": "#/definitions/dataqualities"
 },
 "eventqualities": {
 "type": "object",
 "properties": {
 "description": {
 "type": "string"
 },
 "label": {
 "type": "string"
 },
 "$comment": {
 "type": "string"
 },
 "sdfRef": {
 "$ref": "#/definitions/sdf-pointer"
 },
 "sdfRequired": {
 "$ref": "#/definitions/pointer-list"
 },
 "sdfOutputData": {
 "$ref": "#/definitions/parameter-list"
 },
 "sdfData": {
 "$ref": "#/definitions/sdfData-sdfChoice-properties-"
 }
 },
+ "patternProperties": {
+ "^(?:[a-z][a-z0-9]*:)?[a-z$][A-Za-z$0-9]*$": {}
+ },
 "additionalProperties": false
 },
 "format-": {
- "type": "string",
- "enum": [
- "date-time",
- "date",
- "time",
- "uri",
- "uri-reference",
- "uuid"
+ "anyOf": [
+ {
+ "type": "string",
+ "const": "date-time"
+ },
+ {
+ "type": "string",
+ "const": "date"
+ },
+ {
+ "type": "string",
+ "const": "time"
+ },
+ {
+ "type": "string",
+ "const": "uri"
+ },
+ {
+ "type": "string",
+ "const": "uri-reference"
+ },
+ {
+ "type": "string",
+ "const": "uuid"
+ },
+ {
+ "type": "string"
+ }
+]
+ },
+ "sdfType-": {
+ "anyOf": [
+ {
+ "type": "string",
+ "const": "byte-string"
+ },
+ {
+ "type": "string",
+ "const": "unix-time"
+ },
+ {
+ "$ref": "#/definitions/sdftype-name"
+ }
]
 },
 "sdfData-sdfChoice-properties-": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/dataqualities"
 }
 },
 "type-": {
 "type": "string",
 "enum": [
 "number",
 "string",
 "boolean",
 "integer",
 "array"
]
 },
- "sdfEvent-": {
+ "sdfProperty-": {
 "type": "object",
 "additionalProperties": {
- "$ref": "#/definitions/eventqualities"
+ "$ref": "#/definitions/propertyqualities"
 }
 },
 "sdfAction-": {
 "type": "object",
 "additionalProperties": {
 "$ref": "#/definitions/actionqualities"
 }
 },
- "sdfProperty-": {
+ "sdfEvent-": {
 "type": "object",
 "additionalProperties": {
- "$ref": "#/definitions/propertyqualities"
+ "$ref": "#/definitions/eventqualities"
 }
- },
- "sdfType-": {
- "type": "string",
- "enum": [
- "byte-string",
- "unix-time"
-]
 }
 }
 }

 Data Qualities Inspired by json-schema.org
 This appendix is normative.
 Data qualities define data used in SDF affordances at an information
model level.
A popular way to describe JSON data at a data model level is proposed
by a number of drafts on json-schema.org (which collectively are
abbreviated JSO here); for reference to a popular version, this appendix
points to and .
As the vocabulary used by JSO is familiar to many JSON modelers, the
present specification borrows some of the terms and ports their
semantics to the information model level needed for SDF.
 The main data quality imported is the " type".
In SDF, this can take one of six (text string) values, which are
discussed in the following subsections (note that the JSO type
" null" is not supported as a value of this data quality in SDF).
 The additional quality " const" restricts the data to one specific
value (given as the value of the const quality).
 Similarly, the additional quality " default" provides data that can
be used in the absence of the data (given as the value of the default
quality); this is mainly documentary and not very well-defined for SDF
as no process is defined that would add default values to an instance
of some interaction data.
 Other qualities that are inspired by JSO are " $comment" and
" description", both of which are also available in the information block.

 type " number", type " integer"
 The types " number" and " integer" are associated with floating point
and integer numbers, as they are available in JSON.
A type value of integer means that only integer values of JSON
numbers can be used (note that 10.0 is an integer value, even if it
is in a notation that would also allow non-zero decimal fractions).
 The additional data qualities " minimum", " maximum",
" exclusiveMinimum", and " exclusiveMaximum" provide number values that
serve as inclusive/exclusive lower/upper bounds for the number.
(Note that the Boolean form of
" exclusiveMinimum"/" exclusiveMaximum" found in earlier JSO drafts
is not used.)
 The data quality " multipleOf" gives a positive number that
constrains the data value to be an integer multiple of the number
given.
(Type " integer" can also be expressed as a " multipleOf" quality of
value 1, unless another " multipleOf" quality is present.)

 type " string"
 The type " string" is associated with Unicode text string values, as
they can be represented in JSON.
 The length (as measured in characters, specifically Unicode scalar
values) can be constrained by the
additional data qualities " minLength" and " maxLength", which are
inclusive bounds.
 (More specifically, Unicode text strings as defined in this
specification are sequences of Unicode scalar values, the number of
which is taken as the length of such a text string.
 The data quality " pattern" takes a string value that is interpreted
as an regular expression in Unicode mode that constrains the
string (note that these are not anchored by default, so unless ^ and
 $ anchors are employed, ECMA-262 regular expressions match any string that contains a match).
The JSO proposals acknowledge that regular expression support is
rather diverse in various platforms, so the suggestion is to limit
them to:

 characters;

 character classes in square brackets, including ranges; their complements;

 simple quantifiers *, +, ?, and range quantifiers {n},
 {n,m}, and {n,};

 grouping parentheses;

 the choice operator |;

 and anchors (beginning-of-input ^ and end-of-input $).

 Note that this subset is somewhat similar to the subset introduced by
I-Regexps , which are anchored
regular expressions and include certain backslash escapes for
characters and character classes.
 The additional data quality " format" can take one of the following
values. Note that, at an information model level, the presence of
this data quality changes the type from being a simple text string to
the abstract meaning of the format given (i.e., the format "date-time"
is less about the specific syntax employed in than about the usage
as an absolute point in civil time).

 " date-time", " date", " time":
A date-time, full-date, or full-time as defined in , respectively.

 " uri", " uri-reference":
A URI or URI Reference as defined in , respectively.

 " uuid": A Universally Unique Identifier (UUID) as defined in).

 type " boolean"
 The type " boolean" can take the values " true" or " false".

 type " array"
 The type " array" is associated with arrays, as they are available in
JSON.
 The additional quality " items" gives the type that each of the
elements of the array must match.
 The number of elements in the array can be constrained by the additional
data qualities " minItems" and " maxItems", which are inclusive
bounds.
 The additional data quality " uniqueItems" gives a Boolean value
that, if true, requires the elements to be all different.

 type " object"
 The type " object" is associated with maps, from strings to values, as
they are available in JSON.
 The additional quality " properties" is a map the entries of which
describe entries in the specified JSON map: the key gives an
allowable map key for the specified JSON map and the value is a
map with a named set of data qualities giving the type for the
corresponding value in the specified JSON map.
 All entries specified in this way are optional unless they are listed in
the value of the additional quality " required", which is an array of
string values that give the key names of required entries.
 Note that the term "properties" as an additional quality for
defining map entries is unrelated to sdfProperty.
 For example, to include information about the type of the event in the
"overTemperatureEvent" of , the sdfOutputData there could
be defined as follows:

 Using Object Type with sdfOutputData

 "sdfOutputData": {
 "type": "object",
 "properties": {
 "alarmType": {
 "sdfRef": "cap:#/sdfData/alarmTypes/quantityAlarms",
 "const": "OverTemperatureAlarm"
 },
 "temperature": {
"sdfRef": "#/sdfObject/temperatureWithAlarm/sdfData/temperatureData"
 }
 }
 }

 Implementation Notes
 JSO-based keywords are also used in the specification techniques of a
number of ecosystems, but some adjustments may be required.
 For instance, is based on Swagger 2.0, which appears to be based on
"draft-4" (also called draft-5, but semantically intended to
be equivalent to draft-4).
The " exclusiveMinimum" and " exclusiveMaximum" keywords use the
Boolean form there, so on import to SDF, their values have to be
replaced by the values of the respective " minimum"/" maximum"
keyword, which are then removed; the reverse transformation
applies on export.

 Composition Examples
 This informative appendix contains two examples illustrating different composition approaches
using the sdfThing quality.

 Outlet Strip Example

 Outlet Strip Example

{
 "sdfThing": {
 "outlet-strip": {
 "label": "Outlet strip",
 "description": "Contains a number of Sockets",
 "sdfObject": {
 "socket": {
 "description": "An array of sockets in the outlet strip",
 "minItems": 2,
 "maxItems": 10
 }
 }
 }
 }
}

 Refrigerator-Freezer Example

 Refrigerator-Freezer Example

{
 "sdfThing": {
 "refrigerator-freezer": {
 "description": "A refrigerator combined with a freezer",
 "sdfProperty": {
 "status": {
 "type": "boolean",
 "description":
"Indicates if the refrigerator-freezer is powered"
 }
 },
 "sdfObject": {
 "refrigerator": {
 "description": "A refrigerator compartment",
 "sdfProperty": {
 "temperature": {
 "sdfRef": "#/sdfProperty/temperature",
 "maximum": 8
 }
 }
 },
 "freezer": {
 "label": "A freezer compartment",
 "sdfProperty": {
 "temperature": {
 "sdfRef": "#/sdfProperty/temperature",
 "maximum": -6
 }
 }
 }
 }
 }
 },
 "sdfProperty": {
 "temperature": {
 "description": "The temperature for this compartment",
 "type": "number",
 "unit": "Cel"
 }
 }
}

 Some Changes from Earlier Draft Versions of this Specification
 This appendix is informative.
 The present document provides the base SDF definition.
Previous revisions of SDF, as defined in earlier drafts of this specification, have been in use
for several years; both significant collections of older SDF models and older SDF
conversion tools are available today.
This appendix provides a brief checklist that can aid in upgrading
these to the standard.

 The quality unit was previously called units.

 sdfType was developed out of a concept previously called subtype.

 sdfChoice is the preferred way to represent JSO enum (only a
limited form of which is retained) and also the way to represent
JSO anyOf.

 The length of text strings (as used with minLength/ maxLength
constraints) was previously defined in bytes.
It now is defined as the number of characters (Unicode scalar
values, to be exact); a length in bytes is not meaningful unless
bound to a specific encoding, which might differ from UTF-8 in some
ecosystem mappings and protocol bindings.

 List of Figures

 :

 :

 :

 :

 :

 :

 :

 :

 List of Tables

 :

 :

 :

 :

 :

 :

 :

 :

 :

 :

 :

 :

 :

 Acknowledgements
 This specification is based on work by the One Data Model group.

 Contributors

 Universität Bremen

 Germany

 jan.romann@uni-bremen.de

 Cascoda Ltd.

 Threefield House
 Threefield Lane
 Southampton
 United Kingdom

 w.vanderbeek@cascoda.com

 Authors' Addresses

 KTC Control AB

 29415 Alderpoint Road
 Blocksburg
 CA
 95514
 United States of America

 +1-707-502-5136
 michaeljohnkoster@gmail.com

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 Ericsson

 Jorvas
 02420
 Finland

 ari.keranen@ericsson.com

