| .defaultScalarArguments | Define the default arguments | 
| .defaultScalarArguments-method | Agglomerative nesting | 
| .defaultScalarArguments-method | Clustering Large Applications | 
| .defaultScalarArguments-method | Divisive analysis clustering | 
| .defaultScalarArguments-method | Hierarchical clustering | 
| .defaultScalarArguments-method | The HierarchicalParam class | 
| .defaultScalarArguments-method | Partitioning around medoids | 
| .defaultScalarArguments-method | Define the default arguments | 
| .extractScalarArguments | Define the default arguments | 
| .showScalarArguments | Define the default arguments | 
| AffinityParam | Affinity propogation | 
| AffinityParam-class | Affinity propogation | 
| AgnesParam | Agglomerative nesting | 
| AgnesParam-class | Agglomerative nesting | 
| approxSilhouette | Approximate silhouette width | 
| BlusterParam-class | The BlusterParam class | 
| bootstrapStability | Assess cluster stability by bootstrapping | 
| centers | The FixedNumberParam class | 
| centers-method | The FixedNumberParam class | 
| centers<- | The FixedNumberParam class | 
| centers<--method | The FixedNumberParam class | 
| ClaraParam | Clustering Large Applications | 
| ClaraParam-class | Clustering Large Applications | 
| clusterRMSD | Compute the RMSD per cluster | 
| clusterRows | Cluster rows of a matrix | 
| clusterRows-method | Affinity propogation | 
| clusterRows-method | Agglomerative nesting | 
| clusterRows-method | Clustering Large Applications | 
| clusterRows-method | Density-based clustering with DBSCAN | 
| clusterRows-method | Divisive analysis clustering | 
| clusterRows-method | Dirichlet multinomial mixture clustering | 
| clusterRows-method | Hierarchical clustering | 
| clusterRows-method | K-means clustering | 
| clusterRows-method | Mini-batch k-means clustering | 
| clusterRows-method | Graph-based clustering | 
| clusterRows-method | Partitioning around medoids | 
| clusterRows-method | Clustering with self-organizing maps | 
| clusterRows-method | Two step clustering with vector quantization | 
| clusterSweep | Clustering parameter sweeps | 
| compareClusterings | Compare pairs of clusterings | 
| DbscanParam | Density-based clustering with DBSCAN | 
| DbscanParam-class | Density-based clustering with DBSCAN | 
| DianaParam | Divisive analysis clustering | 
| DianaParam-class | Divisive analysis clustering | 
| DmmParam | Dirichlet multinomial mixture clustering | 
| DmmParam-class | Dirichlet multinomial mixture clustering | 
| FixedNumberParam-class | The FixedNumberParam class | 
| HclustParam | Hierarchical clustering | 
| HclustParam-class | Hierarchical clustering | 
| HierarchicalParam-class | The HierarchicalParam class | 
| KmeansParam | K-means clustering | 
| KmeansParam-class | K-means clustering | 
| KNNGraphParam | Graph-based clustering | 
| KNNGraphParam-class | Graph-based clustering | 
| linkClusters | Create a graph between different clusterings | 
| linkClustersMatrix | Create a graph between different clusterings | 
| makeKNNGraph | Build a nearest-neighbor graph | 
| makeSNNGraph | Build a nearest-neighbor graph | 
| MbkmeansParam | Mini-batch k-means clustering | 
| MbkmeansParam-class | Mini-batch k-means clustering | 
| mergeCommunities | Merge communities from graph-based clustering | 
| neighborPurity | Compute neighborhood purity | 
| neighborsToKNNGraph | Build a nearest-neighbor graph | 
| neighborsToSNNGraph | Build a nearest-neighbor graph | 
| nestedClusters | Map nested clusterings | 
| NNGraphParam | Graph-based clustering | 
| NNGraphParam-class | Graph-based clustering | 
| pairwiseModularity | Compute pairwise modularity | 
| pairwiseRand | Compute pairwise Rand indices | 
| PamParam | Partitioning around medoids | 
| PamParam-class | Partitioning around medoids | 
| show-method | Affinity propogation | 
| show-method | Agglomerative nesting | 
| show-method | The BlusterParam class | 
| show-method | Clustering Large Applications | 
| show-method | Density-based clustering with DBSCAN | 
| show-method | Divisive analysis clustering | 
| show-method | Dirichlet multinomial mixture clustering | 
| show-method | The FixedNumberParam class | 
| show-method | Hierarchical clustering | 
| show-method | The HierarchicalParam class | 
| show-method | K-means clustering | 
| show-method | Mini-batch k-means clustering | 
| show-method | Graph-based clustering | 
| show-method | Partitioning around medoids | 
| show-method | Clustering with self-organizing maps | 
| show-method | Two step clustering with vector quantization | 
| SNNGraphParam | Graph-based clustering | 
| SNNGraphParam-class | Graph-based clustering | 
| SomParam | Clustering with self-organizing maps | 
| SomParam-class | Clustering with self-organizing maps | 
| TwoStepParam | Two step clustering with vector quantization | 
| TwoStepParam-class | Two step clustering with vector quantization | 
| updateObject-method | Hierarchical clustering | 
| updateObject-method | K-means clustering | 
| [[-method | The BlusterParam class | 
| [[-method | Hierarchical clustering | 
| [[<--method | The BlusterParam class |