BiocNeighbors 1.22.0
The BiocNeighbors package provides several algorithms for approximate neighbor searches:
These methods complement the exact algorithms described previously.
Again, it is straightforward to switch from one algorithm to another by simply changing the BNPARAM argument in findKNN and queryKNN.
We perform the k-nearest neighbors search with the Annoy algorithm by specifying BNPARAM=AnnoyParam().
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
fout <- findKNN(data, k=10, BNPARAM=AnnoyParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 3506 7656 9060 294 7982 5763 5474 2185 2560 5397
## [2,] 5151 7920 2937 7891 1893 9072 2090 7528 3900 8499
## [3,] 2397 7417 7970 2647 9880 8618 2825 3404 424 6403
## [4,] 6203 7936 530 7071 4525 899 4804 8264 5204 4180
## [5,] 6131 1074 952 6845 9337 2972 5813 6267 5682 477
## [6,] 2170 22 9687 3589 6577 582 237 1970 7244 9155
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.8567343 0.9148225 0.9407513 0.9881785 1.039331 1.044142 1.045700
## [2,] 0.6668538 0.8987589 0.9708484 1.0178564 1.025155 1.025636 1.026060
## [3,] 0.9775957 0.9990369 1.0128471 1.0149100 1.021895 1.027442 1.027629
## [4,] 0.8519940 0.9045876 0.9454841 0.9798104 1.019344 1.113069 1.130685
## [5,] 0.9539289 0.9631653 1.0059111 1.0206730 1.069508 1.106110 1.116073
## [6,] 0.9079698 0.9231571 0.9897676 0.9988787 1.027678 1.049186 1.051881
## [,8] [,9] [,10]
## [1,] 1.051286 1.056190 1.064790
## [2,] 1.044135 1.048658 1.049732
## [3,] 1.058460 1.064249 1.094251
## [4,] 1.135794 1.140484 1.170250
## [5,] 1.128396 1.144618 1.145611
## [6,] 1.080945 1.083736 1.100816
We can also identify the k-nearest neighbors in one dataset based on query points in another dataset.
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
qout <- queryKNN(data, query, k=5, BNPARAM=AnnoyParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2753 8516 7796 6679 6884
## [2,] 3289 6218 3669 309 8970
## [3,] 3778 9850 9023 4961 1192
## [4,] 432 160 6157 8795 5380
## [5,] 4486 7019 1370 332 1204
## [6,] 2369 4021 1589 8072 9372
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.7266792 1.1280293 1.1945150 1.2018101 1.2285351
## [2,] 0.8395190 0.8967423 0.9254928 0.9273860 0.9366759
## [3,] 0.9343264 1.0064628 1.0398891 1.0494432 1.0512451
## [4,] 0.7891868 0.9628958 1.0200688 1.0563028 1.0563600
## [5,] 0.8804094 0.8907453 0.9851564 0.9880109 1.0105910
## [6,] 0.7642388 0.8639182 0.8784883 0.8930487 0.8942956
It is similarly easy to use the HNSW algorithm by setting BNPARAM=HnswParam().
Most of the options described for the exact methods are also applicable here. For example:
subset to identify neighbors for a subset of points.get.distance to avoid retrieving distances when unnecessary.BPPARAM to parallelize the calculations across multiple workers.BNINDEX to build the forest once for a given data set and re-use it across calls.The use of a pre-built BNINDEX is illustrated below:
pre <- buildIndex(data, BNPARAM=AnnoyParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Both Annoy and HNSW perform searches based on the Euclidean distance by default.
Searching by Manhattan distance is done by simply setting distance="Manhattan" in AnnoyParam() or HnswParam().
Users are referred to the documentation of each function for specific details on the available arguments.
Both Annoy and HNSW generate indexing structures - a forest of trees and series of graphs, respectively -
that are saved to file when calling buildIndex().
By default, this file is located in tempdir()1 On HPC file systems, you can change TEMPDIR to a location that is more amenable to concurrent access. and will be removed when the session finishes.
AnnoyIndex_path(pre)
## [1] "/tmp/RtmpMDZF9O/file24d8b43ba45760.idx"
If the index is to persist across sessions, the path of the index file can be directly specified in buildIndex.
This can be used to construct an index object directly using the relevant constructors, e.g., AnnoyIndex(), HnswIndex().
However, it becomes the responsibility of the user to clean up any temporary indexing files after calculations are complete.
sessionInfo()
## R version 4.4.0 beta (2024-04-15 r86425)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocNeighbors_1.22.0 knitr_1.46 BiocStyle_2.32.0
##
## loaded via a namespace (and not attached):
## [1] cli_3.6.2 rlang_1.1.3 xfun_0.43
## [4] jsonlite_1.8.8 S4Vectors_0.42.0 htmltools_0.5.8.1
## [7] stats4_4.4.0 sass_0.4.9 rmarkdown_2.26
## [10] grid_4.4.0 evaluate_0.23 jquerylib_0.1.4
## [13] fastmap_1.1.1 yaml_2.3.8 lifecycle_1.0.4
## [16] bookdown_0.39 BiocManager_1.30.22 compiler_4.4.0
## [19] codetools_0.2-20 Rcpp_1.0.12 BiocParallel_1.38.0
## [22] lattice_0.22-6 digest_0.6.35 R6_2.5.1
## [25] parallel_4.4.0 bslib_0.7.0 Matrix_1.7-0
## [28] tools_4.4.0 BiocGenerics_0.50.0 cachem_1.0.8