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Chapter 1

Introduction

This dissertation discusses the implementation and evaluation of optimising
the performance of Reduce – a computer algebra system – by translating from
Lisp to Java a selection of the Reduce source code. The project has been
a huge success, meeting (and exceeding) the criteria specified in the project
proposal. In total, over 4,100 Reduce functions have been translated and
incorporated into the Reduce build, corresponding to more than 416,000 lines
of generated Java. The optimised version of Reduce offers a very significant
increase in performance over the original.

1.1 Context and Motivation

Reduce is a computer algebra system capable of advanced algebraic opera-
tions. Amongst many other capabilities, it can expand and factor polyno-
mials, perform integration and differentiation, and is equipped to carry out
many specific calculations for high energy physics. Its development began in
the 1960s and in 2008 was made open source.

The source code for Reduce, a collection of functions comprising around
400,000 lines of code, is written in a Reduce-specific dialect: RLisp. This
is essentially a high level syntax which is mapped onto Lisp, the list-based
programming language.

Building a working version of Reduce involves compiling the Lisp function
definitions into Lisp-specific bytecodes. At runtime, an interpreter decodes
and executes these bytecodes in order to perform a specified operation. Two
Lisp environments which implement the bytecode interpreter currently exist:

1



2 CHAPTER 1. INTRODUCTION

CSL (Codemist Standard Lisp) – written in C, and JLisp – written in Java.
The production version of Reduce is run using CSL.

JLisp began as an experiment several decades after work first started on
Reduce. It was apparent that a Java-based environment offered advantages
over CSL, which have become even clearer in recent years:

1. Java is generally much simpler to interface with other systems than C;
running Reduce on an Android device is a good such example.

2. The existing framework for Java offers better support for building pos-
sible extensions to Reduce. These could include development of a GUI,
experimenting with concurrent use and implementing features for net-
working.

3. A Java version of Reduce can be converted to Javascript and used in a
web browser.

CSL has been extensively optimised and refined since its first implemen-
tation. The main source of improvement has been through translation of
function definitions from Lisp directly into C – such functions are executed
from their C-coded definitions instead of being interpreted via their repre-
sentative bytecodes. This has resulted in a performance increase by a factor
of 6-7. Unfortunately, JLisp currently runs very slowly in comparison with
CSL – so slowly, in fact, that some initial benchmarks suggest that the un-
optimised and optimised versions of CSL are respectively around 8 and 60
times faster than JLisp!

This project explores the hypothesis that an attempt at optimising JLisp
in the same way that was done for CSL will also produce an increase in
performance. The expected level of this increase is uncertain, due both to
the differences between C and Java as languages and to the results achievable
in the time available.

1.2 Challenges

Although this project has the potential to deliver rewarding results, its un-
dertaking will not be easy. I will have to become proficient enough in Lisp
and RLisp to translate the former into Java using the latter. This is from a
point of no experience of either.
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I will also be required to gain an understanding of JLisp, which involves navi-
gating a significant amount of code and identifying how its components work
together. In order to produce Java that successfully interfaces with JLisp,
it will also be necessary to take into account the fundamental differences
between Lisp and Java as programming languages.

It would be unrealistic to attempt to learn everything about these systems
before starting this project’s implementation. As a result, I expect that
difficulties may emerge which could not be foreseen during the planning stage.
However, this is part of what makes the project interesting and does not deter
my enthusiasm!

1.3 Outline of Tasks Required

Here I will provide a brief overview of this project’s components. These have
been refined since writing the project proposal, and correspond to the goals
of the project.

1.3.1 Writing a Basic Translator

Produce a translator that accepts a Reduce function (i.e. a program written
in Lisp) as input and outputs behaviourally equivalent Java. It must be
capable of translating a small selection of basic Reduce functions.

1.3.2 Interfacing the Generated Java with JLisp

The Java output must be in a form compatible with the existing framework
for JLisp. The end result should be that any Java-coded function definitions
are executed in preference to interpreting the corresponding Lisp bytecodes.

1.3.3 Evaluating Correctness and Performance
Change

It is crucial that the modified version of JLisp exactly replicates the behaviour
of the original version. This requires a comprehensive testing process, which
will ensure that any generated Java included in the modified version of JLisp
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is completely safe. Sufficient timing data must also be collected so that
performance differences between the original and modified versions of JLisp
can be confidently attributed to the changes I make.

1.3.4 Extension: Expand the Translator

Once the main project components have been implemented, the next step
will be to incrementally build more functionality into the translator, which
will allow it to accept a greater range of input programs. This will also result
in far more potential interactions between different parts of the translator,
and almost certainly propel the original translation task to a new level of
complexity. For this reason, I view expansion of the translator as an excellent
candidate for a project extension.

This is a particularly open-ended goal, since its ideal completion state is
achieved only by a 100% rate of successful translation of any valid input
program. The scale of this task ensures that I will not run out of things to
do, even if progress is rapidly made in the three essential goals!



Chapter 2

Preparation

Before starting work on the project, it was necessary to prepare in a number
of ways. I needed to familiarise myself with the important aspects of JLisp
and any other existing areas of the Reduce and CSL source code that were
relevant. It was also crucial that I felt comfortable with the new languages
I would be working with: RLisp and its underlying form, Lisp. Essential
parts of any substantial software project were also considered – this includes
revision control, testing strategy and development approach.

In the context of the aforementioned preparatory tasks, this chapter will
demonstrate how proper steps were taken in order to ensure that the project
was carried out in a professional manner. I will begin by providing an
overview of the background knowledge that I had to establish in order to
proceed with the project’s implementation.

2.1 Background on Lisp

Although Lisp encompasses a family of programming languages, the varia-
tion used in this project is based on Standard Lisp. Thus unless otherwise
specified, any discussion of Lisp in this dissertation will be with reference to
Standard Lisp.

Lisp is a high-level programming language that originated in 1958. It
employs a list-based notation whereby all list elements are either lists
themselves, or atomic values such as integers or variable symbols.

(defun add (x y) (+ x y))

5
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Note from the example provided – a Lisp function which adds together two
input values – that Lisp employs Polish prefix notation, the distinguishing
feature of which is the placement of all function symbols and operators to
the left of their operands.

Lisp is expression-oriented; unlike many other languages – including Java –
there is no distinction between expressions and statements. All code and
data is in the form of expressions, and any valid expression in Lisp can be
evaluated to produce a value. This marks a fundamental difference between
Lisp and Java, and one which I will have to take account of when translating
between the two.

2.1.1 Lists

Lisp is designed for symbolic computing. This is supported by the funda-
mental Lisp data structure: the list. Lists are recursively defined, created by
evaluating the following constructors:

1. nil, which denotes the empty list.

2. (cons x L), which creates a list headed by object x and followed by
the members of list L.

For example, to construct a list containing 2 followed by 3, we would evaluate

(cons 2 (cons 3 nil))

Two key built-in functions are car and cdr:

car (cons x L) evaluates to x

cdr (cons x L) evaluates to L

We can use the quote special form to avoid the inconvenience of expressing
a list as a series of nested cons cells:

(quote (2 3))

Using an equivalent shorthand syntax we can write

’(2 3)

Without quoting the expression (2 3), it would be evaluated as a function
call – the default Lisp form – with function symbol 2 and argument 3; quote
prevents evaluation of the list, and its elements are instead treated as literals,
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known as Lisp symbols. A Lisp symbol is an object with a string represen-
tation – its name. Symbols are interned – any two symbols with the same
name are the exact same object – and can be compared for equality with the
built-in function eq. Note that symbols and strings are separate datatypes.

In addition to a name, symbols have a value, a function and a property
list. A property list is a list of paired elements, each of which associates a
property name with a property value. In conjunction with the functions
put and get, properties can be associated with and retrieved from a Lisp
symbol, making the property list a useful data structure. For example, the
symbol elephant might have the following property list:

(name "ellie" colour "grey")

2.1.2 Special Forms

Special forms are pre-defined operators which provide the control structure
for Lisp. The quote special form has already been introduced. Another
example would be the cond special form, used for conditional evaluation in
Lisp. All special forms relevant to this project will be suitably explained in
the next chapter.

2.1.3 RLisp

RLisp is a high-level Lisp syntax written specifically for Reduce. Although
this project was largely carried out using RLisp, it is not particularly relevant
for the purposes of reading this dissertation; much more important is an
understanding of the underlying Lisp.
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2.2 Background on JLisp

JLisp is a Java-based Lisp system, comprising around 30,000 lines of Java
code. Within this environment, Lisp is converted into Lisp-specific bytecodes
which are then input as a stream to a bytecode interpreter. The components
of JLisp can be classified into three main categories:

1. Representative datatypes

2. Built-in functions

3. JLisp runtime environment

2.2.1 Representative Datatypes

JLisp contains a collection of classes that are used to represent the various
datatypes that exist in Standard Lisp. Here I will include brief descriptions
of the most important classes.

LispObject

LispObject is an abstract class from which all other representative datatypes
in JLisp are derived. Several fields and methods are included for general
functionality – such as a print method – as well as empty implementations
of methods used in specific subclasses.

Symbol

The JLisp Symbol object corresponds to a Lisp symbol. A hashmap of sym-
bol names is maintained to ensure that JLisp Symbols retain the singleton
property of their Lisp counterparts: to retrieve the JLisp Symbol correspond-
ing to a particular Lisp symbol, the intern method is called and the symbol’s
name provided as an argument. The hashmap is then queried and the cor-
responding Symbol object returned. If the Symbol object did not exist prior
to the call to intern, a new one is instantiated.

A JLisp Symbol’s value is stored in the car field and its property list in the
cdr field. These fields are so named due to the fact that they are common
to all LispObject and made JLisp’s implementation slightly more flexible.
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LispFunction

A JLisp Symbol’s function is stored in the fn field, an instance of
LispFunction. Contained in this class are method declarations op0, op1,
op2 and opn. These will henceforth be referred to as op methods. 0, 1, and 2

indicate the number of LispObject arguments accepted. opn accepts as its
argument an array of three or more LispObjects. Calling the appropriate
op method corresponds to a Lisp function call. Thus, we call a function in
the following way:

Symbol.intern("demo function").fn.op0();

2.2.2 Built-in Functions

Every built-in Lisp function is implemented in the JLisp sources using an
instance of LispFunction and the appropriate op method. Amongst many
others, this includes the functions car and cdr and basic numerical functions
such as plus2 and times2.

2.2.3 JLisp Runtime Environment

The JLisp runtime environment supports a command-line interface for Re-
duce, from which functions in the Reduce sources can be called. On starting
JLisp, a core set of functions, symbols and other objects is loaded. This
involves creating JLisp objects for all built-in functions and other members
of the Lisp environment such as symbols nil and t, as well as for all Lisp
objects which are part of the set of core Reduce packages.

2.3 Resources

2.3.1 Reduce Test Scripts and Reference Logs

Of the approximately 150 Reduce packages, 100 are accompanied by a com-
prehensive test script designed not only to showcase the package’s capabil-
ities, but more importantly to ensure that the underlying system running
Reduce works correctly. Alongside every test script is a reference log of the
test output which can be used as a comparison to verify the correct behaviour
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of Reduce. These tests and logs were used to determine the correctness of
my modified version of JLisp.

2.3.2 Lisp-to-C Translator

The Lisp-to-C translation code, written in RLisp, provided a basis from which
to start work on the Lisp-to-Java translator. It was important to have a firm
understanding of the code before starting the implementation – this would
allow me to make an informed decision about which parts to retain and which
to discard. However, the high complexity and large size (around 4,000 lines
of RLisp) of the Lisp-to-C translator were not at all easily digestible, and
eventually led to the decision to write most of the Lisp-to-Java translator
from scratch.

2.3.3 Profiling Information

Profiling information for the set of Reduce test scripts was already available
in the CSL sources, in a file named profile.dat. For each such test, the
number of calls made to the bytecode interpreter for each Reduce function
used is provided; in essence, this directly represents the function’s frequency
of use in every test. This was ideal, since I had an effective means of choosing
the hotspot functions to prioritise for translation.

2.3.4 Reduce User’s Manual

The Reduce User’s Manual is available online and provided most of the doc-
umentation I needed in order to become familiar with RLisp.

2.4 Programming Languages

Unsurprisingly, the nature of this project dictated the programming lan-
guages used in its implementation; functions were translated into Java be-
cause JLisp is written in Java.

Although theoretically possible, writing the translator in any language other
than RLisp would have been exceptionally inefficient; the Reduce source
functions, being coded in RLisp (and therefore Lisp), can be directly input
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as data to RLisp. This follows from the property that in Lisp, programs and
data share exactly the same list-based structure. In addition, the Lisp-to-C
translator is written in RLisp, and my intention to recycle some of its code
for use in my own translator meant that I would have to work in the same
language.

It is also worth mentioning the use of Bash in this project; many scripts were
written and tools such as grep and find were needed for effective navigation
of the Reduce sources.

2.5 Development Environment

2.5.1 Machine Specifications

This project was carried out using my desktop computer, which runs using a
3.3GHz dual-core Intel Core i3 processor under Windows 7. However, I find
Linux to be a much more productive programming environment, and elected
to use a virtual machine running the Debian distribution for all coding.

2.5.2 Version Control

Subversion was my chosen version control tool for this project. An account
with Assembla, a cloud-based code storage host, was created and used as a
reliable means for backing up the project repository. Important files were
also backed up using Google Drive.

2.5.3 Programming Environment

The project involved a considerable amount of Linux shell navigation and
usage of tools such as grep. As a result I chose to do all programming using
Vim, the command-line text editor, in conjunction with tmux, an excellent
terminal multiplexer. This proved to be a very productive environment;
the absence of features usually offered only by an IDE was rarely noticed,
and more than made up for by the zero frequency with which I experienced
crashes and freezes usually associated with such software!
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2.6 Software Development Approach

The methodology of incremental development was the natural choice for this
project. Due to the enormous range of functions in the Reduce sources, small
expansions in the translator’s functionality would almost always result in an
increase in translatable functions, and more importantly a new set of edge
cases to consider. Since there was not a clearly defined stopping point, it
made sense to incrementally build the translator, testing each set of newly
eligible functions as new features were added.

2.7 Initial Experience

Thanks to extensive exposure in parts IA and IB of the Computer Science
Tripos, I already had a solid grounding in Java before starting this project.
I was also fairly comfortable using the Linux shell. In stark contrast was my
non-existent prior experience with RLisp and Lisp. Working with software
systems as substantial as Reduce and JLisp was something I had not done
before.

2.8 Summary

In this chapter, I have discussed the steps taken to ensure that I was well-
equipped to begin the implementation of the project. The required back-
ground knowledge on Lisp and JLisp was presented, followed by a descrip-
tion of the resources, languages and development environment that would be
used. I then provided some context, with respect to my previous experience,
to the position from which I would be working on this project.



Chapter 3

Implementation

The primary focus of this chapter will be the process of building the Lisp-to-
Java translator, which after finishing the project is capable of translating the
vast majority of potential input functions. Also covered will be how the task
of interfacing the generated Java with JLisp was successfully carried out, and
how the translation process was automated as the need became apparent. A
high-level style of description will be adopted; minor details will largely be
omitted.

A full example of translator output can be found in Appendix A.

3.1 Structure of Java Output

Before starting work on the translator itself, it was necessary to establish a
format for the generated Java that would conform to the existing framework
for JLisp.

Each translated function appears in its own class. The body of the function is
contained in the appropriately named op method, in accordance with the way
that JLisp makes calls to functions. In figure 3.1, several ‘function classes’ are
contained in class U01; more generally, these function classes are contained
within one of many possible UXX classes. A mapping is maintained in the
builtins table for each function between its Lisp name and an instance
of the class containing its Java translation. This topic is more extensively
discussed in section 3.6.

13
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package uk.co.codemist.jlisp.core;

import java.io.*;

import java.util.*;

import java.text.*;

class U01

{

class J_example extends BuiltinFunction

{

public LispObject op1(LispObject arg1) throws Exception

{

// function definition here

}

}

.

. // more function translations

.

Object [][] builtins =

{

{"example", new J_example()},

.

.

.

}

}

Figure 3.1: Structure of Java output file.
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3.2 Translator Design

As mentioned in the previous chapter, I made the decision to implement
the translator from scratch instead of attempting to modify the Lisp-to-C
translator. However, it still made sense to retain the code used to prepare
the translation environment and perform cleanup at the end of translation.
This ‘fringe’ code required only a few modifications before I was able to get
a Java output file resembling the structure shown in figure 3.1.

To avoid confusion between functions written as part of the translator and the
Reduce functions being translated, I will refer to the former as ‘procedures’.
The top-level procedure accepts as input a Lisp function name, a sanitised1

function name to be used for the corresponding Java class, and the function
definition in its Lisp form (a Lisp list). Translation then proceeds as follows:

1. Process function arguments

2. Evaluate and generate Java for function body

3. Generate the initialiseMe method

Due to the recursive nature of the way in which expressions in Lisp are
evaluated, the translator was designed to traverse the function body – simply
a Lisp expression – in a similar fashion. Like the Lisp-to-C translator, my
translator generates Java in a single pass through the use of print statements.
This sequential approach prevented the use of any form of backtracking – a
constraint which forced the anticipation of all potential problems deeper into
the recursion at the top level of an expression.

With the recursive approach in mind, it was decided to write a single pro-
cedure that would accept any valid Lisp expression and ‘evaluate’2 it, thus
allowing for recursion on subexpressions (those which occur within an ex-
pression). The set of potential input expressions was separated into three
categories:

1. Atomic expressions

2. Function calls

3. Special forms

1See section 3.8.2.
2In the context of this project’s implementation, the term ‘evaluate’ will also be used

(when appropriate) to implicitly refer to the process of parsing and generating Java for a
given input Lisp expression.
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Thus the following structure for the evaluation procedure, loadexp, was used:

symbolic procedure loadexp(e, sym);

begin;

if atom e then

.

. % code for handling atomic expressions

.

else if special_form e then

.

. % code for handling special forms

.

else

.

. % code for handling function calls

.

end;

The argument sym stores the name of the Java variable that is used to store
the result of the evaluated expression.

3.3 Atomic Expressions

3.3.1 Literal and Variable Tables

Literals (numbers, strings, symbols, booleans) and variable symbols con-
stitute Lisp atomic expressions, or ‘atoms’. Atoms are essentially non-list
objects. A mapping is maintained between Lisp and Java representations
of atoms through the use of two tables: a literal table and a variable table.
They both consist of a list of tuple entries of the following format:

(Java variable name, Lisp atom)

Upon encountering a particular atom while translating a function, both ta-
bles are searched for an entry corresponding to the atom. If none exists in
either table, an entry is added to the literal table3. Local variables can only
be introduced as function arguments or as part of the prog special form; if

3The Java variable name is generated using the Lisp procedure gensym, which conve-
niently ensures that duplicate names are not produced.
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no entry exists in either table, the atom must be a literal (fluid and global
variables are exceptions to this statement and are discussed further in sec-
tion 3.5.5).

3.4 Function Calls

Function calls can be thought of as the default type of expression in Lisp,
with the following form:

(function name e1 e2 ...)

To begin with, the arguments to the function must each be evaluated
(these themselves could be function calls!). For example, imagine that the
translator is confronted with the following function call:

(plus2 a b)

We first apply our evaluation procedure to a and b, storing the results in
Java variables g0000 and g0001 respectively. The function symbol plus is
a literal, so its Java variable name can be retrieved from the literal table (or
generated if a table entry does not yet exist). This Java variable – g0002 –
points to the JLisp Symbol object representing the function symbol, and by
accessing its fn field, the function can be called:

LispObject g0003 = g0002.fn.op2(g0000, g0001);

In this case, g0003 is the variable being instantiated to store the value of the
entire expression (ie. the function call). This crucial aspect of the translation
process applies more generally: for every expression in an input Lisp program,
a Java variable must be instantiated to store its value.

3.4.1 The initialiseMe Method

As the astute reader may have observed, I have so far neglected to mention
how any of the literals found in a Lisp function definition are instantiated in
its Java version. Now that I have introduced function calls, this is a good
place to address the issue.

The initial design for a function’s output Java class specified only the op

method containing the Java translation of the function body. The translator
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did not originally make use of a literal table; instead, evaluating a literal
involved immediately declaring and initialising a Java variable to the literal’s
JLisp representation. The expression (plus2 1 1) would translate to:

LispObject g0004 = LispInteger.valueOf(1);

LispObject g0005 = LispInteger.valueOf(1);

LispObject g0006 = (Symbol.intern("plus2")).fn.op2(g0004, g0005);

Aside from the obvious redundancy, the inefficiency of this approach is greatly
exacerbated by the fact that the translated function’s op method could be
called thousands of times in a typical Reduce session. In each of those calls,
intern is called on the Symbol object, and new copies of a LispObject are
created for each literal.

Recognising that literals values only needed to be instantiated once led to
an improved design. After translating the function body, the translator
iterates over the necessarily fully populated literal table and outputs the
initialiseMe method and class variables. Due to their prevalence, the Lisp
boolean symbols nil and t are always included.

class J_add extends BuiltinFunction

{

.

. // op method

.

private void initialiseMe()

{

g0005 = Symbol.intern("plus2");

g0004 = LispInteger.valueOf(1);

jnil = Jlisp.nil;

jtrue = Jlisp.lispTrue;

inited = true;

}

private LispObject jnil = null;

private LispObject jtrue = null;

private LispObject g0004 = null;

private LispObject g0005 = null;

}

Why not just initialise the class variables to their intended values on decla-
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ration? This is in fact what I originally tried. Due to the fact that the JLisp
environment is dynamically created during startup, and that the order in
which translated function classes are included in that creation could not be
reliably determined, I found that the generated Java was referencing objects
that did not yet exist! Thus all class variables are initialised to null.

By using the boolean flag inited, initialiseMe need only be called once
per function per Reduce session. Hence the problem of creating and making
potentially thousands of redundant objects and calls to intern respectively
is solved. The expression from earlier, (plus2 1 1), would now translate to:

LispObject g0006 = ((Symbol)g0005).fn.op2(g0004, g0004);

3.4.2 Inlining Functions

It was previously mentioned that the set of functions built into Lisp is fully
implemented in JLisp. Most of the very commonly used built-in functions
such as car, cdr, atom and cons have such simple implementations that the
overhead of calling them in the way illustrated so far is much more significant
than that of longer, less frequently used functions. I was able to inline a
selection of these functions by mirroring their JLisp implementations in my
translation code. A list of the these functions is maintained, and allows
my translator to conditionally bypass the default handling mechanism for
function calls in favour of one of two procedures for inlining.

The translator has an inlining procedure for functions which accept a fixed
number of arguments and a separate procedure for those with an unbounded
number of arguments. Here is an example of the inlining performed for
plus2:

// Before inlining

LispObject g0006 = ((Symbol)g0005).fn.op2(g0004, g0004);

// After inlining

LispObject g0006 = g0004.add(g0004);

I had also noticed that many functions in the Reduce sources made recur-
sive calls. These recursive calls were ‘inlined’ in the sense that accessing
the function’s op method via the corresponding JLisp Symbol object was
bypassed.
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// Before inlining

LispObject g0009 = ((Symbol)g0007).fn.op1(g0008);

// After inlining

LispObject g0009 = this.op1(g0008);

3.5 Special Forms

Special forms provide the control structure for Lisp. Each must be explicitly
and uniquely handled during translation; treating a special form as a function
call simply does not work. Thus separate procedures had to be written for
translating each special form that I wanted to support. This constituted by
far the most work involved in the translation process.

3.5.1 Conditional Expressions

In Lisp, a conditional expression consists of a list of condition-action pairs.
The first expression in the pair is the condition, which is evaluated in the
typical manner. If the condition does not evaluate to nil, its partner –
the second expression – is evaluated. This second expression’s value is
considered the value of the entire conditional expression.

(cond (a1 a2) (b1 b2) ... (t z2))

The first pair in the list for which the condition holds is evaluated. If all
conditions have evaluated to nil, then the final pair, whose condition is t

(true) is unconditionally evaluated. However, a final pair of this form is
not compulsory; it is analogous to an else statement. An example Java
translation for the cond special form is given in figure 3.2.

Because the number of condition pairs in a Lisp conditional expression is
unbounded, I opted for a recursive method of translation.

3.5.2 Boolean Predicates

The boolean predicates and and or appear in Lisp as special forms. They
accept an unbounded number of expressions as arguments and evaluate each
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(cond ((greaterp x 2) x) ((greaterp y 3) (and y z)) (t z))

LispObject g0041 = jnil; // store value of cond expression

LispObject g0044 = ((Symbol)g0043).fn.op2(x_arg, g0042_int);

if (g0044 != jnil)

{

g0041 = x_arg;

}

else

{

LispObject g0046 = ((Symbol)g0043).fn.op2(y_arg, g0045_int);

if (g0046 != jnil)

{

LispObject g0047 = jnil; // store value of and expression

if (y_arg != jnil)

{

if (z_arg != jnil)

{

g0047 = z_arg;

}

}

g0041 = g0047;

}

else

{

g0041 = z_arg;

}

}

Figure 3.2: Java translation for a cond expression. Also includes and.



22 CHAPTER 3. IMPLEMENTATION

such expression in turn.

(and e1 e2 e3 ...)

(or e1 e2 e3 ...)

If an argument to an and expression evaluates to nil, the remaining ar-
guments are ignored and the and expression’s value is nil. Else, the and

expression will be assigned the value of the final argument. Analogously,
an or expression is assigned the value of the first argument which does not
evaluate to nil. If all arguments evaluate to nil, the entire or expression
has the value nil.

These properties can be expressed in Java simply by correct use of Java con-
ditional statements. A series of nested ifs is produced for and expressions,
and a non-nested set of if...else if... statements is produced for or

expressions. Like the procedure for translating Lisp conditional expressions,
the procedures for translating and and or operate recursively.

3.5.3 Quoted Expressions

It has already been explained that the quote special form indicates that an
expression should not be evaluated, but instead be treated as a literal. This is
trivial if the quoted expression is atomic, but catering for quoted lists was less
straightforward; I shall remind the reader that list elements can themselves
be lists!

The list’s Java construction occurs as it is traversed: the creation of new
Cons objects is inlined4, and entries in the literal table are either retrieved or
generated for every atom in the list. Dotted pairs, a type of cons cell which
does not require its cdr to be a list, can also appear in a quoted list; this
only introduced further unwelcome complexity to the process!

3.5.4 Sequential Execution

There are two special forms for sequential execution in Lisp; progn and prog.

A progn block simply consists of a list of expressions, each of which is eval-
uated in turn. The block evaluates to the value of the final expression in the

4This occurs independently of the inlining of functions mentioned in section 3.4.2.
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(quote (a (b . c) (x y d))) % (b . c) is a dotted pair

LispObject g0071 =

new Cons(g0072,

new Cons(

new Cons(g0073, g0074), // dotted pair

new Cons(

new Cons(g0075,

new Cons(g0076,

new Cons(g0077, jnil))), jnil)));

Figure 3.3: Example quoted list and corresponding Java translation.

list. As expected, supporting this type of special form was fairly straightfor-
ward.

On the other hand, handling prog blocks was one of the most challenging
aspects of this project...

(prog (varA varB ...) e1 e2 ...)

A prog block allows the binding of local variables; these are accessible only
within the local context of the block, and have a default value of nil. In the
example above, varA and varB are bound as local variables. For each such
variable, a Java variable is declared in the translated code and an entry is
added to the variable table. In contrast to the treatment of literals, these
entries must be removed from the variable table after translating a prog

block; this ensures that a variable cannot appear outside its scope in the
generated Java.

Assigning a New Value to a Variable

With the introduction of local variables to my growing list of supported
features came the requirement to accommodate another type of Lisp special
form:

(setq x e)

It can be read as ‘assign variable x the value of expression e’. Translation
trivially involves evaluating e and setting the Java variable for x (retrieved
from the variable table) to the result. The setq special form does a good job
of illustrating the dissonance between Lisp and Java which had to be worked
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around. For example, assignment to a conditional expression is perfectly
valid in Lisp, whereas in Java a conditional statement (or any other type of
statement) cannot be treated in this manner; hopefully it is becoming more
clear that part of the challenge of this project was in finding ways to bridge
the differences between the two languages in the Java output.

3.5.5 Fluid and Global Variables

For the sake of conciseness, I will refer to fluid variables as ‘fluids’ and global
variables as ‘globals’. As would seem likely, global variables are globally
accessible once introduced into the Lisp environment. Fluids operate under
a form of dynamic scoping unique to RLisp, which will shortly be explained.
Globals and fluids have to be declared before use:

global ’(global_var);

fluid ’(fluid_var);

Both fluids and globals are added to the literal table when first encountered
during translation. Like function symbols, they are represented in JLisp by a
Symbol object. This ensures that they are preserved as singletons; different
functions can modify and reference the same fluid or global, which cannot
be modelled using only local variables in Java. Thus fluids and globals must
be globally accessible in JLisp. The value of a fluid or global is stored in
the car field of the corresponding Symbol. Hence, an entry is added to the
variable table, mapping the name of the fluid or global to the car field of its
representative Symbol. This means that the fluid or global can be modified
and referenced in the generated Java in the same way as local variables.

% Literal table

((global_var, g0001), (fluid_var, g0002) ...)

% Variable table

((global_var, g0001.car), (fluid_var, g0002.car) ...)

Binding a Fluid Variable

Unlike globals, fluids can be bound as a local variable in a prog block, or as
an argument in a function definition. If bound as an argument, a fluid will
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LispObject g0008save = dmodebh_fluid.car;

try

{

dmodebh_fluid.car = jnil;

LispObject g0010 = ((Symbol)g0009).fn.op1(u_arg);

g0006 = g0010;

}

finally

{

dmodebh_fluid.car = g0008save;

}

Figure 3.4: Treatment of a locally bound fluid.

take on the value provided in the function call. If bound as part of a prog

block, its value will be set to nil. These values are only retained within
the scope in which the fluid is bound, and are also accessible to any nested
functions called from within the binding context. Upon termination of the
binding function or prog block, the fluid resumes its old value.

Before including support for fluids, the list of function arguments in a func-
tion declaration or local variables at the start of a prog block would simply
have been iterated over, each of its elements being stored in the variable
table. A conditional test was added to the iteration so that it can be deter-
mined whether the variable is a fluid. If yes, the appropriate entries in both
the literal table and the variable table are added.

A new data structure – the ‘save’ table – was introduced to map each bound
fluid to a Java variable used to store the fluid’s original value. After declaring
the Java ‘save’ variables, a Java try block surrounds the body of the binding
context. A finally block ensures that even in the event of an exception,
fluids are always reassigned to their saved values.

3.5.6 Goto Expressions

A significant difference between Lisp and Java is the provision for goto
expressions, which are supported in the former but not the latter. The
problem of simulating goto expressions in Java was initially daunting, but
eventually I arrived at a working solution.
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(prog (varA ...) ... go label ... (go go label) ...)

In Lisp, go labels (and thus goto expressions) can only appear within a
prog block. For this reason, a significant overhaul of the translation unit for
sequential execution was required. Translation of a prog block begins with
a scan for go labels. For each label, an entry in a ‘goto’ table is generated,
mapping a label to both a program counter variable and a specific value of
the variable. The body of the block is then surrounded by a for-switch

construction, as illustrated in figure 3.5.

The switch statement accepts the program counter variable as its argument;
the body of the first case statement (case 0) corresponds to the sequence
of expressions preceding the first goto label, and subsequent case statements
correspond to successive goto labels. A final case statement is used to exit
the for-switch construction.

Handling a goto expression within the for-switch construction is fairly
straightforward. The program counter value associated with the label is
first retrieved from the goto table. The program counter variable is then
set to this value, and the switch statement is re-entered through the use of
continue.

3.5.7 Return

A return expression in Lisp, like goto expressions, can only appear within a
prog block.

(return e)

Expression e is evaluated, and the enclosing prog block is exited; its value
is the value of expression e. Thus, the containing function is only returned
from when returning from the outermost prog block. This behaviour is not
analogous with the way that the Java return statement works, but I initially
chose not to model it in my translator – instead, Lisp return expressions were
directly translated into Java return statements. It was only possible to get
away with this because the functions I was attempting to translate at that
point were fairly basic and did not contain nested prog blocks.

The for-switch construction enabled me to correctly model Lisp return
expressions; the variable representing the value of the prog block is set to
the value of the return expression and the program counter is set so that
execution flows to the final case statement, which terminates the for loop.
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int goto_g0003 = 0; // program counter variable

for(;;)

{

switch(goto_g0003)

{

case 0:

.

. // code before first goto label

.

case 1: // first goto label

LispObject g0007 = l_arg == jnil ? jtrue : jnil;

if (g0007 != jnil)

{

g0002 = g0004_loc;

goto_g0003 = 2; // corresponds to a return expression

continue;

}

LispObject g0008 = l_arg.cdr;

l_arg = g0008;

goto_g0003 = 1; // corresponds to a goto expression

continue;

case 2:

break; // exit switch block

}

break; // exit for loop

}

Figure 3.5: Simple example of the for-switch construction.
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3.5.8 Unreachable Statements

An aspect of the Java compiler which complicated issues is its refusal to
compile code containing ‘unreachable’ statements. The existence of such
statements is made possible by the use of continue when handling return
and goto expressions.

if (g0007 != jnil)

{

g0002 = g0004_loc;

goto_g0003 = 2;

continue;

g0006 = g0002; // unreachable statement

}

Although inclusion of such code could be regarded as bad practice, if syn-
tactically correct its presence should not affect the behaviour of a program.
For mechanically generated Java not intended for human eyes, not having to
worry about unreachable code would have saved a lot of time and effort at
little cost! As a result, I was required to equip my translator with dead code
elimination capabilities.

By considering the various scenarios in which the unreachable statements
could occur, I arrived at a recursively defined definition of the set of Lisp
expressions that would need to be identified, denoted U in the following pseu-
docode:

U := (return _)

| (go _)

| (cond (_ U) (_ U) ... (t U))

| (progn ... U ...)

After writing a procedure to detect such expressions within a Lisp program,
all that remained to do was to conditionally suppress the output of translated
code. This task was less simple than it may seem – the binary variable used
to indicate whether or not to print output needed to be set and reset in
exactly the right places within each of the procedures used to handle the
four affected special forms. Needless to say, the working solution to this
problem was the product of multiple failed iterations!
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3.5.9 Lambda Expressions

(lambda (x y) (plus2 x y)) ((times2 2 3) 4)

Lambda expressions are treated in my translator as a variation on the prog

special form. The lambda variables are first added to the variable table.
Then the arguments to the expression – in this case, (times 2 3) and 4 – are
evaluated, and their results assigned to the corresponding lambda variables’
representative Java variables. The body of the lambda expression – in this
case, (plus2 x y), can then be evaluated. The for-switch construction is
not required for lambda expressions.

Lambda expressions are fairly common in the Reduce sources. This is be-
cause they are employed (in conjunction with goto expressions) in the Lisp
mappings of the loop-based RLisp constructs for each and while. Although
implementing support for the lambda special form did not appear as complex
a task as that for some of the other special forms, I expected there to be a
very large number of unpleasant edge cases and only tackled lambda expres-
sions after a heavy round of testing the rest of the translator. My prediction
turned out to be correct; it took many frustrating hours of debugging and
unholy utterances to tease out the troublesome scenarios.

3.6 Interfacing the Generated Java with

JLisp

3.6.1 Modifying the Startup Process

When building Reduce, every function in the Reduce sources is compiled into
Lisp-specific bytecodes. When the function is called while running Reduce,
the bytecodes are input as a stream to the JLisp bytecode interpreter. A
function symbol’s LOSE property can be set to t in order to remove its defini-
tion – stored in the *savedef property – thus preventing its compilation into
bytecodes during the build. I modified the JLisp sources so that on startup,
this would be done for every function for which a Java translation exists.
So that the translated function can be called, the instance of the Java class
mapped to the function’s Lisp name in the builtins table is stored in the
fn field of the corresponding JLisp Symbol.
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3.6.2 Identifying Translation Errors

Errors Detected by the Java Compiler

Unsurprisingly, bugs in my translator were frequently exposed by errors
raised by the Java compiler; it would have been highly unrealistic to sup-
pose that I had covered all possible edge cases using just the unit tests I had
written, which mainly tested each component of the translator in isolation.
As the capabilities of my translator increased, the potential set of inputs
grew far too quickly for unit testing to be considered a suitable strategy
for debugging. In fact, the vast majority of problems with translation were
revealed at the compilation stage.

Tracking Down Build-Breakers

Successful compilation of the generated Java was by no means a guarantee
that translation had been performed correctly; the next potential point of
failure is the process of buildling a Reduce image. Many checks are performed
during this stage and functions that behave incorrectly can cause the build
to fail. If not identifiable from inspection of the build logs5, such functions
were identified using a ‘binary chop’ approach, whereby half of the translated
functions would be excluded from the build. The outcome of the build could
then be used to determine which half contained the problem function, and
the process repeated as necessary. The problem function could then be added
to a list of functions to omit, which is properly explained in section 3.7.1.
Using this method, the number of build attemps required to track down a
problem function grows logarithmically with the total number of translated
functions. The same approach was applied to builds which completed but
did not produce test output equivalent to that of vanilla JLisp.

Given that a successful Reduce build took around 3 minutes to complete
on my machine, this aspect of debugging was extremely time-consuming. It
was possible to mitigate some of the inconvenience by building a streamlined
version of Reduce – Minireduce – which brought the build time down to
around 90 seconds. It is safe to say that over the course of this project’s
implementation, Minireduce saved me a great deal of time!

5Throughout this project, stack traces proved to be a very unreliable debugging tool.



3.7. AUTOMATING THE TRANSLATION PROCESS 31

3.7 Automating the Translation Process

As the project progressed, it became clear that it was going to be possible to
translate a much larger selection of functions than I had initially anticipated.
Although the high rate of progress largely welcome, it presented a new set
of issues which had to be dealt with.

Using the available profiling information to select candidates for translation,
I had been locating function definitions one at a time and checking that
they were supported by my translator, before copying and pasting them
from the Reduce sources into a file. The functions would then be translated
into Java, which would be output to one of the UXX files. However, this
approach was clearly not going to be scalable when attempting to translate a
large number of functions at a time. My attention was drawn to a program,
make-c-code, which had been written to aid in automating the Lisp-to-C
translation process. I will briefly outline its operation:

1. Prepare a list of names of functions to be translated. The list is ordered
and built using the information in profile.dat. Alternatively, the
option to translate everything in the Reduce sources can be selected,
in which case there is no need to refer to profiling information.

2. For each function whose name appears in the list of candidates, retrieve
its function definition. This is stored in the *savedef property of the
function symbol.

3. Iterate over the list of functions, supplying the definition of each to the
translator, which outputs the translated code to a specified set of files.

My plan was to modify the program so that it was compatible with JLisp and
the translator I had written (I suitably named it make-java-code). Since it
was written using several RLisp features I was not yet familiar with, it took
some time before I had produced a version that worked for JLisp.

3.7.1 Omitted Functions

Because I was no longer cherry-picking functions to translate, it was neces-
sary to account for the fact that that my translator would encounter special
forms that I had not included support for; the generated Java for any func-
tions containing an unsupported special form would then be incorrect. For
example, at one point my translator was not yet able to translate lambda ex-
pressions. In order to remedy this situation I produced a list of ‘bad’ words
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corresponding to keywords associated with the unsupported special forms,
and arranged that functions containing one or more such words would not
be translated. Instead, a commented message identifying the function would
appear at the bottom of the Java output file.

Some functions implemented in separate Reduce packages share the same
name; this could be for several reasons, but again highlights the fact that
large software with multiple contributors is prone to certain issues. In a
purely interpreted environment, loading a package which contained one of
these functions would simply cause an existing definition to be overwritten,
and would not usually be expected to cause problems. However, this mode of
operation is not compatible with the interface used in this project between
JLisp and the generated Java – there is no support for mapping multiple
definitions to the same function name. Hence all functions with name clashes
were identified and added to a list of functions to omit from the translation
process.

3.7.2 Irretrievable Function Definitions

While getting make-java-code to work, an issue began to surface: the defi-
nitions for a significant proportion of functions were not being retrieved. In
fact, a mere 1,000 of 4,5006 Reduce function definitions could be found! After
establishing that a solution to the problem would not be trivial, I decided to
focus on building a working version of JLisp that incorporated as much of the
available 1,000 functions in their translated forms as possible. After all, this
would still be well ahead of what I had originally expected to accomplish.

When this was eventually achieved I set out to solve the problem that I
had placed on hold. I found that the majority of definitions were not being
retrieved because Reduce only loads a core selection of packages by default;
only functions defined in these core packages will have a populated *savedef

property. The first idea I had was to iterate over the entire list of Reduce
packages and load each one. However, several packages contain fluids and
globals with the same name, or introduce fluids and globals which have the
same symbol as local variables in another package. The result is incorrect
translation and thus this approach could not be used. The solution I even-
tually came up with was to iterate over all packages, loading each one on
its own and running make-java-code for just that package. Since packages
frequently make use of functions found in other packages, this would have

6Approximate figures.
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resulted in many duplicate translations. In order to prevent translation of
the same function twice, a list to keep track of which functions have so far
been translated is maintained.

3.8 Improving the Readablility of the

Generated Java

Although originally intended as a possible extension to this project, the case
for improving code readability strengthened as I made progress. I was trans-
lating increasingly involved functions, which produced longer and more com-
plicated Java output. Tracking the precise behaviour of a translated func-
tion had become very difficult, since every Java variable was named under
the same format (gXXXX). This in turn made debugging close to infeasible in
certain cases.

3.8.1 Renaming Variables and Literals

For many situations, only a simple modification to my translator was re-
quired: when adding a mapping to the variable or literal tables, I arranged
that the Java name for the mapping would simply be the name of the variable
or literal, with a suffix attached to specify the type of variable or literal. For
example, a local variable x in the Lisp program would now appear as x loc.
This proved to be invaluable during large bug-busting sessions. However,
pathological cases emerged – such as the use of the same variable name in
two separate loops – and I resorted back to a naming scheme of gXXXX loc

in order to prevent this problem.

3.8.2 Name Sanitisation

Due to a Reduce naming convention, most fluids and globals contain asterisks
and other characters illegal in Java in their names. A procedure was written
to sanitise any input name so that it would be appropriate for use in Java.
Since Lisp uses exclamation marks as an escape character, a procedure also
had to be written to sanitise and preserve strings between Lisp and Java.
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3.9 Summary

This chapter has discussed the design and implementation of the Lisp-to-Java
translator from a high-level perspective. It is capable of correctly translating
the majority of the Reduce sources; this will be demonstrated in the following
chapter. The task of interfacing the generated Java with JLisp was also de-
scribed, as well as automation of the translation process. The steps involved
in improving the readability of the generated Java were briefly touched upon.
A full example of the translator’s output is provided in Appendix A.



Chapter 4

Evaluation

All of this project’s goals were accomplished. The Lisp-to-Java translator
is capable of translating far more than a selection of basic Reduce func-
tions – the original aim. The generated Java is fully compatible with JLisp,
and offers a substantial increase in performance while preserving existing
behaviour.

This chapter will begin by divulging the collection of translation statistics,
which will provide some perspective on the state of the Lisp-to-Java transla-
tor after completing this project. Two more distinct stages of this project’s
evaluation will then be discussed:

1. Establishing the correctness of the translated code.

2. Measuring the change in performance of Reduce resulting from my
modifications.

4.1 Translation Statistics

The Reduce test script profiling information names 4,5781 unique functions.
In total, 4,154 were translated and successfully incorporated into the final
Reduce build. 185 functions were omitted from translation due to the name
clash issue discussed in section 3.7.1. 38 functions required exclusion in order
for the full set of Reduce test cases to pass, and 45 contained unsupported
special forms. I even managed to find 7 functions that were erroneously

1Note that this number is not representative of the entirety of Reduce.
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written! The remainder belonged to packages excluded from this evaluation
for reasons explained in section 4.2.1.

From this information, the following can be stated:

• 90.7% of functions from the entire set of 4,578 were successfully trans-
lated

• 98.0% of functions eligible for translation were successfully translated

• 1.08% of functions were not translated due to unsupported special
forms

• 0.91% of functions prevented one or more tests from producing ideal
results

The successfully translated functions amount to just under 416,709 lines of
generated Java (excluding blank lines). This figure was calculated using the
following Bash script:

grep -v ’^\s*$’ core/UT*.java core/U0*.java core/U10.java \

| sed ’/^\s*\/\//d’ | wc -l

Clearly, the aim of successfully translating a selection of basic Reduce func-
tions has been met. In fact, the translator is very close to the ideal state of
universal operation! It is important to stress that the overall purpose of this
project was to produce a faster version of JLisp; translation of Lisp into Java
was purely the means by which this was achieved. The degradation in per-
formance due to the few translations omitted through fault of the translator
is almost certainly negligible.

4.2 Correctness of Translated Code

It was not considered appropriate to construct a formal proof of the correct-
ness of my translator; the complexity of such a task is well beyond the scope
of this project. Instead, correctness is considered in the context of one of
this project’s goals, which is to replicate the behaviour of vanilla JLisp – the
control for this evaluation.

The nature of this project dictated a filter-based approach to detecting trans-
lation errors. Given the extremely large input space to my translator – in-
deed, almost any function written in RLisp – it was clear that individual unit
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tests for the components of the translator would not be sufficient in capturing
all possible cases.

A function’s journey towards inclusion in a Reduce build involves passing
through a perilous series of filters unscathed. Failed such journeys expose
errors in the translator. I will provide a brief explanation of each filter:

1. Translation into Java: Syntax errors in the translator are instantly
exposed by premature termination and an error message. Incorrect use
of car, cdr and their derivatives is also punished at this stage.

2. Compiling the Generated Java: The Java compiler ruthlessly picks
out syntax errors, and its complaints about undeclared variables were
instrumental in identifying problems with usage of the various mapping
tables used during translation.

3. Building Reduce: During the build process, many checks and a lim-
ited set of tests are carried out. These will catch some (but not all)
erroneous translations.

4.2.1 Reduce Test Scripts

Of the 153 packages comprising Reduce, 100 are accompanied by a test script.
Each of these packages also includes an ‘ideal’ test log, which was treated
as the reference point for determining the correctness of translated functions
used in that package’s test script. Virtually all tests make use of functions
from other packages, which contributes further rigour to this process.

I began by running the 100 Reduce tests using vanilla JLisp. I then manually
compared each of the test logs with the corresponding reference log. This was
done using vimdiff, a tool without which I would have painfully struggled to
reliably detect discrepancies! Of the 100 Reduce tests, vanilla JLisp produced
ideal output for 90. The remaining 10 were thus excluded from this project’s
evaluation. A further test – ‘assert’ – also had to be excluded, since it
examines the structure of installed (pre-compiled) objects. The modified
JLisp necessarily fails since there is no pre-compiled definition for any of the
translated functions.

I am very pleased to report that after removing just the few problematic
translations mentioned in section 4.1 from the build, the modified JLisp
produced ideal output for all 89 tests. Therefore, this project’s goal for
correctness has been met.
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4.3 Performance Analysis

4.3.1 The Java JIT Compiler

An interesting feature of the Java Virtual Machine is the just-in-time (JIT)
compiler. It essentially performs a task in close harmony with the nature of
this project: hotspot methods are identified during execution and the cor-
responding Java bytecodes are translated into directly executable machine
code. This yields a significant increase in performance, but one which can-
not be immediately realised. It will be shown in this project’s performance
analysis how the effects of the Java JIT compiler were taken into account.

4.3.2 Measurements Taken

For each Reduce test used in this analysis, the time taken to complete the
test was measured for the four different implementations of Reduce:

1. Vanilla CSL

2. Optimised CSL

3. Vanilla JLisp

4. Modified JLisp

The test logs produced by running the Reduce test scripts conveniently record
the time taken for completion of the test (in milliseconds). I wrote a script to
extract the timings from a full set of test logs and output them, along with
the test name, to a CSV file. This required spending some time learning to
use sed, the Unix stream editor, but was well worth the avoidance of the
far more time-consuming, error-prone alternative of manually reading each
log file. A full set of tests was performed three times for each of the four
implementations of Reduce, and the mean time for each test was computed.
A fresh instance of Reduce was used for each individual test run.

An additional set of measurements was taken for both versions of JLisp. I
was interested in observing the impact on timings caused by repeated runs
of the same test in a single Reduce session; this is because it is impossible
to ascertain from just one test run whether the Java JIT compiler has had
a chance to profile and optimise the target program. Unfortunately, a large
number of tests alter the initial Reduce environment on which they rely in
order to complete without error. Consequently, I was only able to obtain this
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sort of timing for a small subset of the full collection of test cases. These
qualifying tests were repeatedly run until their times had converged – pre-
sumably the point at which the JIT compiler had no remaining optimisations
to make.

To guarantee a fair test environment, I increased the priority of the Virtual-
Box process (I ran the tests on a Debian virtual machine) to ‘High’, closed
all non-essential programs, and refrained from using my computer for the
duration of the tests.

4.3.3 Discussion of Results

In this discussion, speedup is defined as the ratio between the average test
time for vanilla JLisp and that for the modified JLisp. The two versions of
CSL will be considered analogously.

For all sets of timings, the modified JLisp exhibits a significant improvement
in performance compared with its vanilla counterpart. This is reflected in
the chart on the following page.

Two different metrics for ‘overall’ speedup in both JLisp and CSL were cal-
culated:

1. Taking the arithmetic mean of the speedup of each individual test, over
all tests

2. Summing the test times for both versions of Reduce and taking the
ratio between these totals

The results are as follows:

CSL JLisp JLisp/CSL
Metric 1 6.6 4.5 0.68
Metric 2 7.2 6.2 0.86
% difference 9 38

      

 
Test 

Speedup Speedup 
Ratio 

 

 JLisp (1) JLisp (i)  

 alg 0.9 3.6 4.1  

 arnum 2.3 8.5 3.7  

 poly 1.0 7.7 7.8  

 matrix 2.8 5.6 2.0  

 int 2.6 5.6 2.1  

 atensor 31.8 60.3 1.9  

 algint 6.9 5.0 0.7  

      

 

Figure 4.1: Table comparing JLisp speedup after one run versus the value
converged upon after many runs
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Table 4.1: Comparison between speedup of CSL and JLisp using the two
different metrics

CSL JLisp JLisp/CSL
Metric 1 6.6 4.4 0.67
Metric 2 7.2 5.9 0.82

% difference 9 29

      

 
Test 

Speedup Speedup 
Ratio 

 

 JLisp (1) JLisp (i)  

 alg 0.9 3.6 4.1  

 arnum 2.3 8.5 3.7  

 poly 1.0 7.7 7.8  

 matrix 2.8 5.6 2.0  

 int 2.6 5.6 2.1  

 atensor 31.8 60.3 1.9  

 algint 6.9 5.0 0.7  

      

 

Table 4.2: JLisp speedup after one run versus the value converged upon after
many runs. Values are to 2 significant figures.
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Table 4.1: Comparison between speedup of CSL and JLisp using the two
different metrics.
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Several observations can be made from table 4.1. For both CSL and JLisp,
a more favourable speedup was produced using metric 2, under which the
weight of each test’s individual speedup is proportional to the time taken to
complete the test2. However, the difference between the two metrics is far
more significant for JLisp, at 29%, than for CSL; This is almost certainly
due to the fact that the Java JIT compiler has much more opportunity to
perform optimisations during the longer tests.

From a user’s perspective, it makes sense to assign more importance to the
speedup of longer operations. For example, if test A and test B both report
a speedup of 2, and the tests originally took 1s and 100s respectively to
complete, then the 50s shaved off the time taken to complete test B has far
more of an impact than the 500ms improvement in test A. Thus I view metric
2 as a more reliable indicator than metric 1 of the real-world impact that
will be made by my modifications to JLisp. If Reduce usage statistics were
available, it would have been possible to assign importance to the various
packages based on how often they are used. This would have led to an even
better metric for determining speedup.

I find the fraction of CSL’s speedup achieved by that of JLisp very encour-
aging; ignoring the ‘fringe’ code largely shared between the Lisp-to-C and
Lisp-to-Java translators, the latter is less than half the size of the former,
and considerably less refined. However, direct comparisons between JLisp
and CSL should not be taken too seriously because of the vastly different
modes of execution between Java and C.

The two data series plotted in figure 4.1 have a correlation coefficient3 of 0.39.
While only weakly positive, it demonstrates a stronger relationship between
speedup and original test time than the coefficient of 0.19 for CSL.

2Note that due to the variation in values of individual speedup, the distribution of this
weight will not be equal between any of the four implementations of Reduce being tested.

3Pearson product-moment correlation coefficient.
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Figure 4.1: Plot of test speedup against the time taken for vanilla JLisp to
complete the test.

Significant evidence of optimisation by the Java JIT compiler emerges from
repeated runs of a selection of tests. These were repeated until the comple-
tion time had converged; this should represent the point at which no further
optimisations are made by the JIT compiler. Even at this point of conver-
gence, the time taken for individual test runs fluctuates. Hence I could only
estimate the time taken for a test at its convergence point, and did so by aver-
aging over multiple measurements taken after reaching this point. The set of
graphs on the next page gives an indication of the convergence characteristic
for each featured package test.
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Test
Speedup

Speedup Ratio
JLisp(1) JLisp(i)

rsolve 1.1 2.5 2.2
modsr 0.9 1.9 2.0

alg 0.9 3.6 4.2
arnum 1.0 8.5 8.2
poly 1.0 7.7 7.7

matrix 1.0 5.6 5.5
int 2.0 5.6 2.8

algint 3.4 6.2 1.8
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Table 4.2: JLisp speedup after one run versus the value converged upon after
many runs. Speedup under JLisp(1) is calculated using times taken for the
first run of a test. Speedup under JLisp(i) is calculated using times taken at
the point of convergence. Values are to 2 significant figures.

For all tests, the time taken at the point of convergence is visibly lower for
the modified JLisp than for vanilla JLisp. The fluctuations in time taken are
much greater in relative terms for the shorter tests, which suggests either a
deviation characteristic at the level of the Java Virtual Machine4 or merely
an error-prone timer. Interestingly, the performance of vanilla JLisp for the
longest two tests, int and algint, actually decreased after the first run. As
things currently stand, it is not entirely clear why this is the case.

Not only did the modified JLisp perform better than vanilla JLisp at the
point of convergence, but it was also more extensively optimised by the JIT
compiler. This is reflected in the fact that the speedup for JLisp(i) was
significantly higher than that of JLisp(1). Initially this was puzzling, but I
soon discovered that the Java JIT compiler only performs method inlining
– its main tool for optimisation – for methods less than a certain size. I
also found out that this had not been considered when the JLisp bytecode
interpreter had been written; its interpret method is well over 1,000 lines
long. Conversely, the majority of methods generated by my translator are
quite a lot smaller than this!

Thus it would appear that credit for a significant proportion of the improve-
ment in JLisp’s performance is due to a previously unconsidered side effect
of executing functions from their Java translations!

4Although an interesting issue, it has little impact on the vast majority of Reduce test
cases so I did not further investigate it.



Chapter 5

Conclusions

In this project I set out to establish whether translating Lisp into Java would
affect the performance of JLisp, a Java-coded Lisp environment designed for
use with the Reduce computer algebra system. This was to be carried out
in the context of a similar approach that was applied to CSL, a C-coded
Lisp environment, and was to involve writing a translator to mechanically
produce Java given a Lisp function as input.

The project has been very successful – the original aims have all been met
and where possible, quite far exceeded. The translator I have written has
led to a Reduce build which incorporates 4,154 translated functions – more
than 416,000 lines of generated Java. This has been extensively tested and
is several times faster than the version available at the start of this project.

5.1 Further Work

There is still plenty of work to be done. The Lisp-to-Java translator does not
currently accept all inputs programs and some of the translations it produces
do not operate correctly, meaning that there are still some cases to account
for!

I also expect that there is scope for optimising the generated Java during
translation. For example, separating very large methods into several smaller
methods is likely to result in more optimisation from the Java JIT compiler.
There is also a lot of potential for improving JLisp.
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The improved performance yielded by this project means that running Re-
duce in Java is much more viable than it previously was. This opens the
possibility of writing a version of Reduce for Android and implementing a
graphical interface.

Finally, I would like to be able to translate the translator using itself! I see
no reason why this cannot be done, and it would have been attempted if
there was more time.

5.2 Lessons Learned

Working with large software systems was a novelty and even though it had
been considered, I had underestimated the increased potential for things to
go wrong; problems were often not confined to the contents of a single file or
directory and thus difficult to isolate. As a result, the lost time which had
been scheduled for translation work had to be made up elsewhere.

Working with Lisp introduced me to a very refreshing programming
paradigm, and having to translate it into Java (a rather different language!)
has brought to my attention many programming ‘delicacies’ which I other-
wise would never have thought about. I am now convinced that the best way
to learn a new programming language is to find yourself racing against the
clock to do something useful with it!

The project has been thoroughly enjoyable, and many valuable skills and
lessons have been learned through its realisation.



Appendix A

Example Translation: reval1

This section is here to give the reader an idea of the scale of translation that
was eventually achieved.

A.1 RLisp

symbolic procedure reval1(u,v);

if null !*revalp then u

else

(begin scalar x,y;

if null u then return nil

else if stringp u then return u

else if fixp u

then return if flagp(dmode!*,’convert) then reval2(u,v) else u

else if atom u

then if null subfg!* then return u

else if idp u and (x := get(u,’avalue))

then if u memq varstack!* then recursiveerror u

else <<varstack!* := u . varstack!*;

return if y := get(car x,’evfn)

then apply2(y,u,v)

else reval1(cadr x,v)>>

else nil

else if not idp car u % or car u eq ’!*comma!*

then if (x := get(caar u,’structfn)) then return apply(x,{u})

else errpri2(u,t)

else if car u eq ’!*sq

then return if caddr u and null !*resimp

then if null v then u else prepsqxx cadr u

else reval2(u,v)

else if flagp(car u,’remember) then return rmmbreval(u,v)

else if flagp(car u,’opfn) then return reval1(opfneval u,v)

else if x := get(car u,’psopfn)

then <<u := apply1(x,cdr u);

if x := get(x,’cleanupfn) then u := apply2(x,u,v);

return u>>
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else if arrayp car u then return reval1(getelv u,v);

return if x := getrtype u then

if y := get(x,’evfn) then apply2(y,u,v)

else rerror(alg,101,

list("Missing evaluation for type",x))

else if not atom u

and not atom cdr u

and (y := getrtype cadr u)

and null(y eq ’list and cddr u)

and (x := get(y,’aggregatefn))

and (not(x eq ’matrixmap) or flagp(car u,’matmapfn))

and not flagp(car u,’boolean)

and not !*listargs and not flagp(car u,’listargp)

then apply2(x,u,v)

else reval2(u,v)

end) where varstack!* := varstack!*;

A.2 Lisp

(progn (put (quote reval1) (quote number!-of!-args) 2) (de reval1 (u v) (

cond ((null !*revalp) u) (t ((lambda (varstack!*) (declare (special varstack!*))

(prog (x y) (cond ((null u) (return nil)) ((stringp u) (return u)) ((fixp u) (

return (cond ((flagp dmode!* (quote convert)) (reval2 u v)) (t u)))) ((atom u) (

cond ((null subfg!*) (return u)) ((and (idp u) (setq x (get u (quote avalue))))

(cond ((memq u varstack!*) (recursiveerror u)) (t (progn (setq varstack!* (cons

u varstack!*)) (return (cond ((setq y (get (car x) (quote evfn))) (apply2 y u v)

) (t (reval1 (cadr x) v)))))))) (t nil))) ((not (idp (car u))) (cond ((setq x (

get (caar u) (quote structfn))) (return (apply x (list u)))) (t (errpri2 u t))))

((eq (car u) (quote !*sq)) (return (cond ((and (caddr u) (null !*resimp)) (cond

((null v) u) (t (prepsqxx (cadr u))))) (t (reval2 u v))))) ((flagp (car u) (

quote remember)) (return (rmmbreval u v))) ((flagp (car u) (quote opfn)) (return

(reval1 (opfneval u) v))) ((setq x (get (car u) (quote psopfn))) (progn (setq u

(apply1 x (cdr u))) (cond ((setq x (get x (quote cleanupfn))) (setq u (apply2 x

u v)))) (return u))) ((arrayp (car u)) (return (reval1 (getelv u) v)))) (return

(cond ((setq x (getrtype u)) (cond ((setq y (get x (quote evfn))) (apply2 y u v)

) (t (rerror (quote alg) 101 (list "Missing evaluation for type" x))))) ((and (

not (atom u)) (not (atom (cdr u))) (setq y (getrtype (cadr u))) (null (and (eq y

(quote list)) (cddr u))) (setq x (get y (quote aggregatefn))) (or (not (eq x (

quote matrixmap))) (flagp (car u) (quote matmapfn))) (not (flagp (car u) (quote

boolean))) (not !*listargs) (not (flagp (car u) (quote listargp)))) (apply2 x u

v)) (t (reval2 u v)))))) varstack!*)))))

A.3 Java

class J_reval1 extends BuiltinFunction

{

public LispObject op2(LispObject u_arg, LispObject v_arg) throws Exception

{

if (!inited) initialiseMe();

LispObject top_return = jnil;

LispObject g1054 = jnil;

LispObject g1055 = bhrevalp_fluid.car == jnil ? jtrue : jnil;

if (g1055 != jnil)
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{

g1054 = u_arg;

}

else

{

LispObject g1056 = jnil;

LispObject g1058save = varstackbh_fluid.car;

try

{

varstackbh_fluid.car = varstackbh_fluid.car;

LispObject g1059 = jnil;

LispObject g1061_loc = jnil;

LispObject g1062_loc = jnil;

int goto_g1060 = 0;

for(;;)

{

switch(goto_g1060)

{

case 0:

goto_g1060 += 1;

LispObject g1063 = jnil;

LispObject g1064 = u_arg == jnil ? jtrue : jnil;

if (g1064 != jnil)

{

g1059 = jnil;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1066 = ((Symbol)g1065).fn.op1(u_arg);

if (g1066 != jnil)

{

g1059 = u_arg;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1068 = ((Symbol)g1067).fn.op1(u_arg);

if (g1068 != jnil)

{

LispObject g1069 = jnil;

LispObject g1071 = ((Symbol)g1070).fn.op2(dmodebh_fluid.car, g1072);

if (g1071 != jnil)

{

LispObject g1074 = ((Symbol)g1073).fn.op2(u_arg, v_arg);

g1069 = g1074;

}

else

{

g1069 = u_arg;

}

g1059 = g1069;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1075 = u_arg.atom ? jtrue : jnil;

if (g1075 != jnil)

{
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LispObject g1076 = jnil;

LispObject g1077 = subfgbh_fluid.car == jnil ? jtrue : jnil;

if (g1077 != jnil)

{

g1059 = u_arg;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1078 = jnil;

LispObject g1080 = ((Symbol)g1079).fn.op1(u_arg);

if (g1080 != jnil)

{

LispObject g1082 = ((Symbol)g1081).fn.op2(u_arg, g1083);

g1061_loc = g1082;

if (g1061_loc != jnil)

{

g1078 = g1061_loc;

}

}

if (g1078 != jnil)

{

LispObject g1084 = jnil;

LispObject g1086 = ((Symbol)g1085).fn.op2(u_arg, varstackbh_fluid.car);

if (g1086 != jnil)

{

LispObject g1088 = ((Symbol)g1087).fn.op1(u_arg);

g1084 = g1088;

}

else

{

LispObject g1089 = new Cons(u_arg, varstackbh_fluid.car);

varstackbh_fluid.car = g1089;

LispObject g1090 = jnil;

LispObject g1091 = g1061_loc.car;

LispObject g1092 = ((Symbol)g1081).fn.op2(g1091, g1093);

g1062_loc = g1092;

if (g1062_loc != jnil)

{

LispObject[] g1095 = {g1062_loc, u_arg, v_arg};

LispObject g1096 = ((Symbol)g1094).fn.opn(g1095);

g1090 = g1096;

}

else

{

LispObject g1097 = g1061_loc.cdr.car;

LispObject g1098 = this.op2(g1097, v_arg);

g1090 = g1098;

}

g1059 = g1090;

goto_g1060 = 1;

continue;

}

g1076 = g1084;

}

else

{

}

}

g1063 = g1076;

}
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else

{

LispObject g1099 = u_arg.car;

LispObject g1100 = ((Symbol)g1079).fn.op1(g1099);

LispObject g1101 = g1100 == jnil ? jtrue : jnil;

if (g1101 != jnil)

{

LispObject g1102 = jnil;

LispObject g1103 = u_arg.car.car;

LispObject g1104 = ((Symbol)g1081).fn.op2(g1103, g1105);

g1061_loc = g1104;

if (g1061_loc != jnil)

{

LispObject g1106 =

new Cons(u_arg, jnil);

LispObject g1108 = ((Symbol)g1107).fn.op2(g1061_loc, g1106);

g1059 = g1108;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1110 = ((Symbol)g1109).fn.op2(u_arg, jtrue);

g1102 = g1110;

}

g1063 = g1102;

}

else

{

LispObject g1111 = u_arg.car;

LispObject g1113 = ((Symbol)g1112).fn.op2(g1111, g1114);

if (g1113 != jnil)

{

LispObject g1115 = jnil;

LispObject g1116 = jnil;

LispObject g1118 = ((Symbol)g1117).fn.op1(u_arg);

if (g1118 != jnil)

{

LispObject g1119 = bhresimp_fluid.car == jnil ? jtrue : jnil;

if (g1119 != jnil)

{

g1116 = g1119;

}

}

if (g1116 != jnil)

{

LispObject g1120 = jnil;

LispObject g1121 = v_arg == jnil ? jtrue : jnil;

if (g1121 != jnil)

{

g1120 = u_arg;

}

else

{

LispObject g1122 = u_arg.cdr.car;

LispObject g1124 = ((Symbol)g1123).fn.op1(g1122);

g1120 = g1124;

}

g1115 = g1120;

}

else

{
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LispObject g1125 = ((Symbol)g1073).fn.op2(u_arg, v_arg);

g1115 = g1125;

}

g1059 = g1115;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1126 = u_arg.car;

LispObject g1127 = ((Symbol)g1070).fn.op2(g1126, g1128);

if (g1127 != jnil)

{

LispObject g1130 = ((Symbol)g1129).fn.op2(u_arg, v_arg);

g1059 = g1130;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1131 = u_arg.car;

LispObject g1132 = ((Symbol)g1070).fn.op2(g1131, g1133);

if (g1132 != jnil)

{

LispObject g1135 = ((Symbol)g1134).fn.op1(u_arg);

LispObject g1136 = this.op2(g1135, v_arg);

g1059 = g1136;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1137 = u_arg.car;

LispObject g1138 = ((Symbol)g1081).fn.op2(g1137, g1139);

g1061_loc = g1138;

if (g1061_loc != jnil)

{

LispObject g1140 = u_arg.cdr;

LispObject g1142 = ((Symbol)g1141).fn.op2(g1061_loc, g1140);

u_arg = g1142;

LispObject g1143 = jnil;

LispObject g1144 = ((Symbol)g1081).fn.op2(g1061_loc, g1145);

g1061_loc = g1144;

if (g1061_loc != jnil)

{

LispObject[] g1146 = {g1061_loc, u_arg, v_arg};

LispObject g1147 = ((Symbol)g1094).fn.opn(g1146);

u_arg = g1147;

g1143 = u_arg;

}

g1059 = u_arg;

goto_g1060 = 1;

continue;

}

else

{

LispObject g1148 = u_arg.car;

LispObject g1150 = ((Symbol)g1149).fn.op1(g1148);

if (g1150 != jnil)

{

LispObject g1152 = ((Symbol)g1151).fn.op1(u_arg);

LispObject g1153 = this.op2(g1152, v_arg);
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g1059 = g1153;

goto_g1060 = 1;

continue;

}

}

}

}

}

}

}

}

}

}

LispObject g1154 = jnil;

LispObject g1156 = ((Symbol)g1155).fn.op1(u_arg);

g1061_loc = g1156;

if (g1061_loc != jnil)

{

LispObject g1157 = jnil;

LispObject g1158 = ((Symbol)g1081).fn.op2(g1061_loc, g1093);

g1062_loc = g1158;

if (g1062_loc != jnil)

{

LispObject[] g1159 = {g1062_loc, u_arg, v_arg};

LispObject g1160 = ((Symbol)g1094).fn.opn(g1159);

g1157 = g1160;

}

else

{

LispObject g1162 =

new Cons(g1163,

new Cons(g1061_loc, jnil));

LispObject[] g1165 = {g1166, g1161_int, g1162};

LispObject g1167 = ((Symbol)g1164).fn.opn(g1165);

g1157 = g1167;

}

g1154 = g1157;

}

else

{

LispObject g1168 = jnil;

LispObject g1169 = u_arg.atom ? jtrue : jnil;

LispObject g1170 = g1169 == jnil ? jtrue : jnil;

if (g1170 != jnil)

{

LispObject g1171 = u_arg.cdr;

LispObject g1172 = g1171.atom ? jtrue : jnil;

LispObject g1173 = g1172 == jnil ? jtrue : jnil;

if (g1173 != jnil)

{

LispObject g1174 = u_arg.cdr.car;

LispObject g1175 = ((Symbol)g1155).fn.op1(g1174);

g1062_loc = g1175;

if (g1062_loc != jnil)

{

LispObject g1176 = jnil;

LispObject g1177 = ((Symbol)g1112).fn.op2(g1062_loc, g1178);

if (g1177 != jnil)

{

LispObject g1179 = u_arg.cdr.cdr;

if (g1179 != jnil)

{
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g1176 = g1179;

}

}

LispObject g1180 = g1176 == jnil ? jtrue : jnil;

if (g1180 != jnil)

{

LispObject g1181 = ((Symbol)g1081).fn.op2(g1062_loc, g1182);

g1061_loc = g1181;

if (g1061_loc != jnil)

{

LispObject g1183 = jnil;

LispObject g1184 = ((Symbol)g1112).fn.op2(g1061_loc, g1185);

LispObject g1186 = g1184 == jnil ? jtrue : jnil;

if (g1186 != jnil)

{

g1183 = g1186;

}

else

{

LispObject g1187 = u_arg.car;

LispObject g1188 = ((Symbol)g1070).fn.op2(g1187, g1189);

if (g1188 != jnil)

{

g1183 = g1188;

}

}

if (g1183 != jnil)

{

LispObject g1190 = u_arg.car;

LispObject g1191 = ((Symbol)g1070).fn.op2(g1190, g1192);

LispObject g1193 = g1191 == jnil ? jtrue : jnil;

if (g1193 != jnil)

{

LispObject g1194 = bhlistargs_fluid.car == jnil ? jtrue : jnil;

if (g1194 != jnil)

{

LispObject g1195 = u_arg.car;

LispObject g1196 = ((Symbol)g1070).fn.op2(g1195, g1197);

LispObject g1198 = g1196 == jnil ? jtrue : jnil;

if (g1198 != jnil)

{

g1168 = g1198;

}

}

}

}

}

}

}

}

}

if (g1168 != jnil)

{

LispObject[] g1199 = {g1061_loc, u_arg, v_arg};

LispObject g1200 = ((Symbol)g1094).fn.opn(g1199);

g1154 = g1200;

}

else

{

LispObject g1201 = ((Symbol)g1073).fn.op2(u_arg, v_arg);

g1154 = g1201;

}



A.3. JAVA 55

}

g1059 = g1154;

goto_g1060 = 1;

continue;

case 1:

break;

}

break;

}

g1056 = g1059;

}

finally

{

varstackbh_fluid.car = g1058save;

}

g1054 = g1056;

}

top_return = g1054;

method_count += 1;

return top_return;

}

private void initialiseMe()

{

bhrevalp_fluid = Symbol.intern("*revalp");

varstackbh_fluid = Symbol.intern("varstack*");

g1065 = Symbol.intern("stringp");

g1067 = Symbol.intern("fixp");

g1070 = Symbol.intern("flagp");

dmodebh_fluid = Symbol.intern("dmode*");

g1072 = Symbol.intern("convert");

g1073 = Symbol.intern("reval2");

subfgbh_fluid = Symbol.intern("subfg*");

g1079 = Symbol.intern("idp");

g1081 = Symbol.intern("get");

g1083 = Symbol.intern("avalue");

g1085 = Symbol.intern("memq");

g1087 = Symbol.intern("recursiveerror");

g1093 = Symbol.intern("evfn");

g1094 = Symbol.intern("apply2");

g1202 = Symbol.intern("reval1");

g1105 = Symbol.intern("structfn");

g1107 = Symbol.intern("apply");

g1109 = Symbol.intern("errpri2");

g1112 = Symbol.intern("eq");

g1114 = Symbol.intern("*sq");

g1117 = Symbol.intern("caddr");

bhresimp_fluid = Symbol.intern("*resimp");

g1123 = Symbol.intern("prepsqxx");

g1128 = Symbol.intern("remember");

g1129 = Symbol.intern("rmmbreval");

g1133 = Symbol.intern("opfn");

g1134 = Symbol.intern("opfneval");

g1139 = Symbol.intern("psopfn");

g1141 = Symbol.intern("apply1");

g1145 = Symbol.intern("cleanupfn");

g1149 = Symbol.intern("arrayp");

g1151 = Symbol.intern("getelv");

g1155 = Symbol.intern("getrtype");

g1164 = Symbol.intern("rerror");

g1166 = Symbol.intern("alg");

g1161_int = LispInteger.valueOf(101);
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g1163 = new LispString("Missing evaluation for type");

g1178 = Symbol.intern("list");

g1182 = Symbol.intern("aggregatefn");

g1185 = Symbol.intern("matrixmap");

g1189 = Symbol.intern("matmapfn");

g1192 = Symbol.intern("boolean");

bhlistargs_fluid = Symbol.intern("*listargs");

g1197 = Symbol.intern("listargp");

jnil = Jlisp.nil;

jtrue = Jlisp.lispTrue;

method_count = 0;

inited = true;

}

private LispObject jnil = null;

private LispObject jtrue = null;

private LispObject bhrevalp_fluid = null;

private LispObject varstackbh_fluid = null;

private LispObject g1065 = null;

private LispObject g1067 = null;

private LispObject g1070 = null;

private LispObject dmodebh_fluid = null;

private LispObject g1072 = null;

private LispObject g1073 = null;

private LispObject subfgbh_fluid = null;

private LispObject g1079 = null;

private LispObject g1081 = null;

private LispObject g1083 = null;

private LispObject g1085 = null;

private LispObject g1087 = null;

private LispObject g1093 = null;

private LispObject g1094 = null;

private LispObject g1202 = null;

private LispObject g1105 = null;

private LispObject g1107 = null;

private LispObject g1109 = null;

private LispObject g1112 = null;

private LispObject g1114 = null;

private LispObject g1117 = null;

private LispObject bhresimp_fluid = null;

private LispObject g1123 = null;

private LispObject g1128 = null;

private LispObject g1129 = null;

private LispObject g1133 = null;

private LispObject g1134 = null;

private LispObject g1139 = null;

private LispObject g1141 = null;

private LispObject g1145 = null;

private LispObject g1149 = null;

private LispObject g1151 = null;

private LispObject g1155 = null;

private LispObject g1164 = null;

private LispObject g1166 = null;

private LispObject g1161_int = null;

private LispObject g1163 = null;

private LispObject g1178 = null;

private LispObject g1182 = null;

private LispObject g1185 = null;

private LispObject g1189 = null;

private LispObject g1192 = null;

private LispObject bhlistargs_fluid = null;

private LispObject g1197 = null;
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}
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Introduction

“REDUCE is an interactive system for general algebraic computations of in-
terest to mathematicians, scientists and engineers.” Some of the things it
is capable of are analytic differentiation and integration, expansion and or-
dering of polynomials and rational functions, and arbitrary precision integer
and real arithmetic.

The REDUCE source code is essentially written in Lisp. When running
REDUCE, the Lisp code is compiled into Lisp-specific bytecodes and fed
through a Lisp interpreter. There currently exist two implementations of
such an interpreter - one written in C (CSL) and one written in Java (JLisp).

Unfortunately, JLisp runs extremely slowly. To provide some context to this
statement, a benchmark function was written in Lisp and timed running
natively as well as in CSL and JLisp. Given the same arguments in each
case, the function was computed in approximately the following times: Lisp
- 15s, CSL - 2s, JLisp - 120s. The function when written directly in Java
computed in less than 1s.

My project will be to rewrite several parts of JLisp and measure and analyse
the change in performance resulting from my modifications. It will be useful
in a broader sense because a Java implementation of REDUCE offers several
advantages over a version written in C:

1. Java is often much easier to use when interfacing with other software;
an obvious example here is running REDUCE on Android.

2. A Java version of REDUCE can be converted to Javascript and used
in a web browser.

3. The existing framework for Java makes building extensions for RE-
DUCE a much simpler and quicker task than doing so using C. Such
examples could include developing a GUI, experimenting with concur-
rent use and implementing network access.

Work to be Done

To begin, I will need to establish familiarity with my working environment.
This will entail installing REDUCE, gaining an understanding of how it
works, and most importantly, looking through the JLisp code until I am
comfortable with how it operates.
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In order to produce a convincing evaluation, it will be necessary to carry
out some initial benchmark tests to determine the relative performance of
the main components of REDUCE. This will involve native Lisp code, CSL,
JLisp and some translations of small functions from REDUCE into C and
Java that I will manually write.

Since REDUCE consists of around 400,000 lines of code, and JLisp 30,000,
it will not be feasible to translate or optimise every aspect of the software.
Instead, I will use profiling tools to identify the most frequently used areas
of code and focus on modifying those, either by manually translating them
or by mechanical conversion into Java. This will concern approximately the
most frequently called 5% of functions. It is possible that in several cases
issues with translation will arise. In such situations, my approach will be to
omit the problematic function from the set of candidates.

There will also be the task of deciding which parts of REDUCE to hand-
translate into Java and which to mechanically convert; it is very likely that
mechanical translation will be much easier to perform on purely numeric
functions than on more complicated ones. Should this be the case, I will have
to investigate the potential trade-off between speed of translation and the
associated performance change of manually versus mechanically converted
code.

The code for CSL should provide a suitable base from which to start making
improvements to JLisp; my supervisor wrote CSL and later optimised it
in the manner that I am now proposing for this project. Indeed, without
access to such a critically useful resource, the scope of the task would almost
certainly have been too great for the amount of time and importance it has
been allocated.

I will develop a testing framework as the project progresses so that I can
continuously assess the performance change resulting from my modifications.
This is an important step because it will let me determine at which point the
improvements are sufficiently marginal that I can shift my focus to extension
work, and will also enable me to provide a comprehensive presentation of the
performance changes realised.

Being a substantial piece of software, it is expected that during the course
of the project I will discover bugs in the REDUCE source code. Should this
happen, I will try (within reason) to fix them, and at the very least alert my
supervisor to their presence.

Much of the work will involve programming in Java and C, or reading existing
such code. Fortunately I am familiar enough with both languages that I will
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not have to devote a lot of time to related learning. However, although I
encountered Lisp in Part IB lectures, my experience with it is very limited
and I will need to spend time developing a better understanding of it in order
to work on this project.

Resources Required

I will primarily work on the project using my own PC, which runs Windows
7 with Debian Linux in a virtual machine.

I have set up a Subversion repository which will provide cloud backup for my
code, as well as offering easy access for my supervisor.

Two copies of REDUCE will be stored—one for my modified version and
one for the existing version—so that I can compare them when testing and
evaluating. This will require around 50MB storage space, which should not
be a problem.

Since my plan is to translate the most frequently called functions in RE-
DUCE, an important requirement is that I identify them through profiling
a realistic corpus. REDUCE includes an extremely comprehensive set of
scripts that test and demonstrate its capabilities. I am confident, after dis-
cussion with my supervisor, that these scripts will be more than sufficient. In
addition, they will assist in verifying that any modifications made to JLisp
preserve the correct behaviour of the program.

Should my computer suddenly fail, I will be able to continue working using
the MCS machines in the Computer Laboratory.

Success Criterion for the Main Result

My project will be successful if I can translate a small selection of basic
functions in REDUCE to Java and preserve the correctness of the existing
version of the program. This can be determined by running the included test
scripts. In addition, I should be able to produce a full evaluation explaining
the change in performance arising from any modifications that I make. This
should include a comparison of test results from the original and modified
versions of REDUCE.
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Possible Extensions

After satisfying the main criterion for success, I would seek to implement
a larger selection of the most frequently used functions in REDUCE. The
next step would be to have converted all of the top 5% most called functions
(aside from the problematic ones mentioned earlier), again with correctness
preserved. This could also include a comparison of the performance of each
of the individual REDUCE tests between the existing and modified versions.

As mentioned in the introduction, a very attractive property of the Java
version of REDUCE is that it can be converted to Javascript and run in a
browser. Exploring the use of this feature and potentially making improve-
ments to it could prove to be a useful activity.

Timetable

1. October 27th - November 9th Install REDUCE and set up a repos-
itory with two copies of the source code. Familiarise myself with the
code, especially JLisp. Perform free-standing tests to establish the cur-
rent capabilities of REDUCE.

2. November 10th - November 23rd Start profiling REDUCE to iden-
tify the most active regions of the program. Look in detail at the CSL
code and strategies used to improve performance. Try applying these in
manual translation of small examples to Java. Start developing testing
framework for the project.

3. November 24th - December 7th Start on mechanical conversion
to Java of pure numeric code, using existing profiling analysis to select
code for conversion. Continue work on test framework.

4. December 8th - January 11th Continue core translation work, pay-
ing attention to test results to decide between manual and mechanical
conversion for each part of the REDUCE code in question.

5. January 12th - January 25th Write progress report and ensure that
basic parts of the project can be demonstrated to overseers as part of
the presentation.

6. January 26th - February 15th Translation of more challenging func-
tions in REDUCE. Start writing dissertation.
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7. February 16th - March 8th Start work on extensions if appropriate.
Work for core project should be mostly written up.

8. March 9th - 19th April Finish work on extensions. Hand in disser-
tation draft.

9. 20th April - May 3rd Perform full set of timing and correctness
tests on both the original and modified versions of REDUCE. A full
performance evaluation should be produced by the end of this period.

10. May 4th - May 15th Finish dissertation. Hand in early to provide
a buffer period for any unforseen circumstances and to leave time for
crucial exam revision.


