
The parcolumns package∗

Jonathan Sauer
jonathan.sauer@gmx.de

2004/11/25

Abstract

This file describes the parcolumns package that provides an environment
for typesetting text in two or more columns columns in parallel.

Contents

1 Introduction 1

2 Usage 2

3 Examples 3

4 Notes 4

5 Implementation 5
5.1 Allocation . 5
5.2 keyvalue keys . 5
5.3 Main environments and macros . 6
5.4 Internal environments and macros 9

1 Introduction

Sometimes it is necessary to typeset text in two or more columns in parallel,
i.e. when typesetting a text in its original language and in its translation(s).
This package provides the parcolumns environment for typesetting text in several
columns, where the text of all columns is aligned vertically.

Text in the parcolums environment is typeset in chunks, where the chunks of
one row are aligned vertically. A chunk consists of one or more paragraphs of text,
including TEX macros.

∗This document corresponds to parcolumns.sty v1.2, dated 2004/11/25.

1

2 Usage

Usage: parcolumns [〈options〉] {〈number of colums〉}.parcolumns

Inside the parcolumns environment text can be typeset in two or more columns
in parallel via the \parchunk macro. Normal text can also be included.

The parcolumns environment takes an optional parameter that specifies the
options for the environment using the keyval and processkv packages. The following
options exist:

colwidths Sets the widths of the columns. The widths are specified as key-values,
〈columnnumber〉=〈width〉. Columns start at ‘1’. Note that in order to be
ignored by the keyval package, the complete value has to be surrounded by
braces, i.e. ‘colwidths={1=2cm,3=5cm,4=2cm}’ to set the first column to a
width of 2 cm, the third to 5 cm and the fourth to 2 cm. (the second column
is calculated)

Columns not set this way will be distributed evenly across the remaining
horizontal space of the page.

distance Sets the distance between two columns. If omitted set to 2em.

rulebetween (Flag)1 Typeset a vertical bar between two columns.

false if omitted.

nofirstindent (Flag) Suppress the indentation of the first paragraph in the en-
vironment.

false if omitted.

sloppy (Flag) Typeset text in the columns in a more sloppy way, preventing
overfull hboxes at the cost of larger interword spacing.

false if omitted.

sloppyspaces (Flag) Makes spaces in the columns stretchable, preventing overfull
hboxes at the cost of even larger interword spacing that sloppy.

false if omitted.

Usage: \colchunk [〈column〉] {〈chunk〉}.\colchunk

The macro \colchunk sets a chunk of text for the next column. You don’t
have to set chunks for all columns; the colums not set remain empty. However,
the columns are filled from left to right, so if a column inbetween should remain
empty, you must say \colchunk{} or specify the column to set using the optional
parameter (columns start at 1): \colchunk[2]{. . . } sets the text of the second
column. Following calls to \colchunk without optional parameter fill the third,
fourth et cetera column.

After a call to \colplacechunks, the column number is reset to one.

2

Usage: \colplacechunks.\colplacechunks

The macro \colplacechunks places the chunks added with \colchunk on the
page. If there are no chunks to place, it does nothing.

3 Examples

Two columns, option rulebetween=true (which is the same as just saying
rulebetween):

Erwarten Sie von mir, dass ich Do you expect me to talk? – No,
rede? – Nein, Mister Bond, ich erwarte Mister Bond, I expect you to die!
von Ihnen, dass Sie sterben!

Erwarten Sie von mir, dass ich Do you expect me to talk? – No,
rede? – Nein, Mister Bond, ich erwarte Mister Bond, I expect you to die!
von Ihnen, dass Sie sterben!

As the german text is slightly longer, let’s make the left column alittle bit larger
using colwidths={1=.55\linewidth}:

Erwarten Sie von mir, dass ich rede? – Do you expect me to talk? –
Nein, Mister Bond, ich erwarte von Ihnen, No, Mister Bond, I expect you
dass Sie sterben! to die!

Erwarten Sie von mir, dass ich rede? – Do you expect me to talk? –
Nein, Mister Bond, ich erwarte von Ihnen, No, Mister Bond, I expect you
dass Sie sterben! to die!

Three columns, option nofirstindent=true:

This is just a short en- Dies ist nur ein kurzer This is another short en-
glish text, just long enough deutscher Text, gerade glish text, as my french
to fill a few lines. lang genug, um ein paar is not that good any-

Zeilen zu fuellen. more.

There was an overfull \hbox in the previous text. Let’s try that again with the
option sloppy:

This is just a short Dies ist nur ein kurzer This is another short en-
english text, just long deutscher Text, gerade glish text, as my french
enough to fill a few lines. lang genug, um ein paar is not that good any-

Zeilen zu fuellen. more.

No overfull hbox this time, but the spacing in the first column is not optimal. You
1Meaning that if you just say rulebetween, you set the flag, as well as when you say

rulebetween=true. Saying rulebetween=false clears the flag, even though this does not make
much sense, as it is the default.

3

just have to pick what’s better. Or you could try the interword spacing provided
by the soul package.

Maybe we do not want to fill the first column, but do not want to type
\colchunk{} either. Then we can say \colchunk[2] to directly start with the
second column (note that we are using the option sloppy, too):

This is just a short Dies ist nur ein kurzer
english text, just long deutscher Text, gerade
enough to fill a few lines. lang genug, um ein paar

Zeilen zu fuellen.

Note that parcolumns does not insert vertical space before or after the environ-
ment! In these examples, the space has manually been added with \addvspace.

4 Notes

• The columns will always fill the complete width of the page by stretching
or shrinking the space between the columns. That means that if the total
width of all columns is set to about half the page width, the space between
the columns will take up the rest, ignoring whatever was set with the key
distance.2

• Footnotes are not set in columns.

• parcolumns does not work very well with displayed formula. The best way
to typeset a displaymath et.al. environment is to include it in separate
\colchunk commands, i.e. (assuming two columns and the same formula in
both):

... some text placed using \colchunk ...

\colchunk{ % Left column

\begin{displaymath}

x^2 + y^2 = z^2

\end{displaymath}

}

\colchunk{ % Right column

\begin{displaymath}

x^2 + y^2 = z^2

\end{displaymath}

}

\colplacechunks

... some more text placed using \colchunk ...

2The key distance is only used for calculating the width of the columns and is ignored
afterwards.

4

5 Implementation

5.1 Allocation

The current column (starting with one):
1 \newcount\pc@columnctr

The total number of columns in the current parcolums environment.
2 \newcount\pc@columncount

Place a vertical rule between two columns?
3 \newif\ifpc@rulebetween

Stores \everypar for use in \parparagraphs.
4 \newtoks\pc@everypar

Note that additional allocations are performed later on-demand in \pc@alloccolumns.

5.2 keyvalue keys

\pc@boolkey Sets an if-condition in {〈#1 〉} to the value passed as {〈#2 〉}. If #2 is false, set
if#1 to false, else (any other value) to true.

Usage: \pc@boolkey {〈ifcondition〉} {〈value〉}
5 \def\pc@boolkey#1#2{%

6 \edef\@tempa{#2}%

7 \edef\@tempb{false}%

8 \ifx\@tempa\@tempb%

9 \csname #1false\endcsname%

10 \else%

11 \csname #1true\endcsname%

12 \fi%

13 }

Define the keys for the options of parcolumns.
14 \define@key{parcolumns}{distance}{%

15 \@tempdimc#1\relax%

16 }

17 \define@key{parcolumns}{rulebetween}[true]{%

18 \pc@boolkey{pc@rulebetween}{#1}%

19 }

20 \define@key{parcolumns}{nofirstindent}[true]{%

21 \pc@boolkey{@tempswa}{#1}%

If the indentation of the first line of the first paragraph should be suppressed,
change \pc@everypar accordingly. The token register is reset after the placing of
the first row of chunks in \colplacechunks.

What exactly are we doing? First we assign box 0 the contents of \lastbox.
At the beginning of a paragraph \lastbox contains the glue inserted for the inden-
tation of the first line. By assigning this box to box 0, we remove the indentation.
We do this in a group as not to change the contents of box 0.

5

Afterwards we set \everypar to nothing. This is necessary because we only
want to suppress the indentation for the first paragraph of the parcolumns en-
vironment, not every paragraph. We set \everypar and not \pc@everypar to
nothing, because \pc@everypar is only a temporary storage that will be assigned
to \everypar when used.

22 \if@tempswa\pc@everypar{{\setbox\z@\lastbox}\everypar{}}\fi%

23 }

24 \define@key{parcolumns}{sloppy}[true]{%

25 \pc@boolkey{@tempswa}{#1}%

If sloppy typesetting is asked for, we set \hbadness and \tolerance to 10000,
so that TEX breaks lines whenever possible, even if this means high interword
spacing.

26 \if@tempswa%

27 \hbadness\@M%

28 \tolerance\@M%

29 \fi%

30 }

31 \define@key{parcolumns}{sloppyspaces}[true]{%

32 \pc@boolkey{@tempswa}{#1}%

If sloppy spaces are asked for, we make the space stretchable:

33 \if@tempswa%

34 \spaceskip.3333em\@plus1em %

35 \fi%

36 }

We save the key-value-list containing widths of the columns in \toks@ for later
use in \pc@setcolumnwidths.

37 \define@key{parcolumns}{colwidths}{%

38 \toks@{#1}%

39 }

5.3 Main environments and macros

parcolumns Environment for a number of columns of text set in parallel (see section 2 on page
2 for the possible options)

Usage: \begin{parcolumns} [〈options〉] {〈number of columns〉} . . . \end{parcolums}

40 \newenvironment{parcolumns}[2][]{%

41 \pc@rulebetweenfalse%

\if@tempswa is true, if the indentation of the first line should be suppressed,
otherwise false. Default is false:

42 \@tempswafalse%

\@tempdimc contains the space between two columns. Default is 2em:

43 \@tempdimc2em\relax%

6

We set the options:

44 \toks@{}%

45 \setkeys{parcolumns}{#1}%

We store the total number of columns and reset the counter for the current
column:

46 \pc@columncount#2 %

47 \pc@columnctr\z@%

We allocate the columns and set their widths:

48 \pc@alloccolumns%

49 \pc@setcolumnwidths%

We switch to vertical mode:

50 \endgraf%

As we are changing \everypar, we need to make sure that the most important
flag is reset, which normally happens in the \everypar of a \section-command:
\if@nobreak. (otherwise the next section is typeset directly after the text of the
previous section instead of leaving some space)3

51 \@nobreakfalse%

We reset \everypar, as it is of no use for us and can only screw up things
badly:

52 \global\everypar{}%

53 }{%

At the end of the parcolumns-environment . . . just in case, we place the last
chunks, if not already done so:

54 \colplacechunks%

55 \endgraf%

We reset \clubpenalty globally to its normal value (the \global makes sure
that if \everypar should have reset \clubpenalty, it is reset now).

56 \global\clubpenalty\@clubpenalty%

We suppress the indentation of the next paragraph immediately following the
environment:

57 \@doendpe%

58 }

\colchunk Sets the text for the next chunk of the next column.
Usage: \colchunk [〈column〉] {〈chunk〉}. (note that the { and } are not

optional, even if the chunk consists of only one token!)
We need two macros for handling the optional parameter 〈column〉, \colchunk

and \colchunk@. First we define \colchunk:

59 \newcommand{\colchunk}{\@testopt\colchunk@{}}%

3I discovered this the hard way, spending one or two hours wondering why the spacing between
two sections was much too small.

7

\colchunk@ What are we doing now? By suffixing the last (optional) parameter by #, we tell
TEX that the last parameter of \colchunk is to be delimited by a right brace {, or
TEX will complain with a more comprehensible message that without the #: ‘Use
of \colchunk doesn’t match its definition.’ instead of ‘Missing { inserted.’
60 \long\def\colchunk@[#1]#{%

We check if the optional parameter is not empty. Then we use it as the column
number, otherwise we simply pick the next column:
61 \ifx\\#1\\%

62 \advance\pc@columnctr\@ne%

63 \else%

64 \pc@columnctr#1\relax%

65 \fi%

If we try to add a column past the last one, we display an error message:
66 \ifnum\pc@columnctr>\pc@columncount%

67 \PackageError{parcolumns}{The column \number\pc@columnctr\space%

68 is too large}{Only \number\pc@columncount\space columns are%

69 \space allowed.}

As we cannot simply skip the chunk (we could gobble what follows after the
macro, but this would require a lot of jumping, and just for handling a small
mistake . . .), we simply set the last column:
70 \pc@columnctr\pc@columncount%

71 \fi%

We zero the \clubpenalty that could have been changed, i.e. by \everypar
of a \section-command: \section changes the clubpenalty to prevent a break
between the first two lines of the paragraph following immediately after the section;
as we split off line after line when typesetting the two columns, this would make
splitting of a single line impossible (\vsplit uses the same logic as page-breaking),
thus resulting in a lot of overfull vboxes and weird spacing inbetween, as two lines
would be split off.

We do this every time we add chunks just in case some macro in the chunks
has changed \clubpenalty. Note that we cannot prevent a macro in the text of
the chunk to change the \clubpenalty.4 But if it is changed, at least it will not
stay changed (though the typeset columns will still look bad).
72 \clubpenalty\z@%

The same goes for the other penalties TEX will insert between two lines, as we
absolutely, positively must be able to break between any two lines:5

73 \interlinepenalty\z@%

74 \displaywidowpenalty\z@%

75 \widowpenalty\z@%

76 \brokenpenalty\z@%

4Well we could, by redefining the clubpenalty to be a macro that simply throws its parameter
away, and using some tricks to make this macro behave like a register, therefore completely
ignoring any change of the clubpenalty.

5C.f. chapter 14 of the TEXbook

8

We set \everypar to our self-defined \pc@everypar to suppress the indenta-
tion of the first paragraph if so desired:

77 \everypar\expandafter{\the\pc@everypar}%

After the next assignment, insert the width of the column:

78 \afterassignment\pc@setcolumnwidth%

We typeset the chunk’s text into the box \pc@column@〈column counter〉. The
text of the chunk follows the macro, meaning that the last line looks like this:
\vbox{〈chunk text〉}.

But what about the width of the box? \hsize must be set in the vbox in
order to make it the correct width! We achieve this using the \afterassignment
above: After the assignment of the chunk’s text to the box, we are inside the box,
therefore the contents of \pc@setcolumnwidth is inserted at the very beginning
of the vbox, setting the correct width.

Why don’t we simply make \colchunk take one parameter that contains the
text of the chunk? Because in that case, macros that change catcodes like \verb
would be prohibited, which would restrict this package somewhat. Also it would
be slower and would use more memory.

79 \expandafter\setbox\csname pc@column@\number\pc@columnctr\endcsname%

80 \vbox%

81 }

\colplacechunks Places all chunks set with \colchunk.

82 \newcommand{\colplacechunks}{%

If there are any chunks to place:

83 \ifnum\pc@columnctr>\z@%

We place them:

84 \pc@placeboxes%

We reset the column counter:

85 \pc@columnctr\z@%

We clear \pc@everypar, because we only want to suppress the indentation of
the first paragraph of each column at the very top of the parcolumns environment,
not of the first paragraph of every call to \colchunk.

86 \pc@everypar{}%

87 \fi%

88 }

5.4 Internal environments and macros

\pc@placeboxes Places the prepared boxes (containing the chunks) on the page.

89 \def\pc@placeboxes{%

9

We assume we don’t have to perform another line (\@tempa contains what we
have to to after we are finished with this macro). The assignment is global because
later on when changing \@tempa we are in a group:

90 \global\let\@tempa\relax%

91 \count@\z@%

We create a hbox. Inside a hbox, vboxes are put horizontally next to each
other and are aligned on their baseline:

92 \hb@xt@\linewidth{%

Before doing any work, we change a few parameters:
We prevent warnings of overfull and underfull vboxes as they can happen, but

we do not really care (happens when we \vsplit the top off the chunks, this is
okay):

93 \vfuzz30ex %

94 \vbadness\@M%

We prevent vertical glue to be insert when vsplitting a vbox (otherwise it
screws up the spacing).

95 \splittopskip\z@skip%

Now we loop over all the prepared boxes. We can use \loop here as we are in
a group (begun by \hbox). Otherwise we would have to open a group manually
or loop manually, as to not screw up a \loop outside the macro:

96 \loop\ifnum\count@<\pc@columncount%

97 \advance\count@\@ne%

If the box \pc@column@〈counter〉 is empty, we simply insert a hskip the width
of the box (saved in \pc@column@width@〈counter〉):
98 \expandafter\ifvoid\csname pc@column@\number\count@%

99 \endcsname%

100 \hskip\csname pc@column@width@\number\count@\endcsname%

101 \else%

Otherwise we \vsplit the first line of the box (at the same time removing
it from \pc@column@〈counter〉) and save it in \@tempboxa. Then, we strip this
resulting box of its enclosing vbox and put it into another vbox, which we put
into the hbox begun a few lines ago.

Why is this so complicated? To ensure that proper vertical glue is inserted
(otherwise the spacing between the lines would be wrong).

102 \expandafter\setbox\expandafter\@tempboxa\expandafter%

103 \vsplit\csname pc@column@\number\count@\endcsname%

104 to \dp\strutbox%

105 \vbox{\unvbox\@tempboxa}%

106 \fi%

If the remaining box is not empty, we have to perform at least another line:

107 \expandafter\ifvoid\csname pc@column@\number\count@%

10

108 \endcsname\else%

109 \global\let\@tempa\pc@placeboxes%

110 \fi%

If this is not the last column, we put a strut into the hbox to ensure propery
vertical spacing:

111 \ifnum\count@<\pc@columncount%

112 \strut%

If a vertical line should be placed between two columns, we insert it now,
centering it between two \hfills. Otherwise, we simply insert a \hfill that
stretches as much as possible, pushing the right column to the right margin. (see
also section 4 on page 4)

113 \hfill%

114 \ifpc@rulebetween%

115 \vrule%

116 \hfill%

117 \fi%

118 \fi%

119 \repeat%

120 }%

If necessary, we perform another line:

121 \@tempa%

122 }

\pc@alloccolumns Allocates a number of \boxes, named \pc@column@1, \pc@column@2 et cetera, if
not already allocated.

Also allocates a number of \dimens, named \pc@column@width@1 et cetera.
If the \boxes and \dimens are already allocated, they are cleared (\boxes) or

set to zero (\dimens).

123 \def\pc@alloccolumns{%

124 \count@\z@%

125 \loop\ifnum\count@<\pc@columncount%

126 \advance\count@\@ne%

127 \@ifundefined{pc@column@\number\count@}{%

128 \expandafter\newbox\csname pc@column@\number\count@%

129 \endcsname%

130 \expandafter\newdimen\csname pc@column@width@\number%

131 \count@\endcsname%

132 }{%

133 \setbox0\box\csname pc@column@\number\count@\endcsname%

134 \csname pc@column@width@\number\count@\endcsname\z@%

135 }%

136 \repeat%

137 }

\pc@setcolumnwidths Sets the widths of all columns. The defined widths have been temporarily stored
in \toks@. \@tempdimc contains the space between two columns.

11

138 \def\pc@setcolumnwidths{%

139 \expandafter\processkeyvalues\expandafter{\the\toks@}%

140 \pc@setsinglecolwidth%

\@tempdima will contain the total width of all columns that have a known
width (read: have had their width set via the parameter colwidths)

141 \@tempdima\z@%

\@tempcnta will contain the count of columns that an unknown width (read:
have had their width not set via the parameter colwidths, thus now hav-
ing a width of zero points, as the widths of all columns have been reset in
\pc@alloccolumns):

142 \@tempcnta\z@%

We calculate the total width of all columns known. We count how many
columns have an unknown width:

143 \count@\z@%

144 \loop\ifnum\count@<\pc@columncount%

145 \advance\count@\@ne%

146 \@tempdimb\csname pc@column@width@\number\count@\endcsname%

147 \advance\@tempdima\@tempdimb%

148 \ifnum\@tempdimb=\z@%

149 \advance\@tempcnta\@ne%

150 \else%

151 \PackageInfo{parcolumns}{Width of column \number\count@%

152 \space set to \the\@tempdimb}

153 \fi%

154 \repeat%

If at least one column has an unknown width:

155 \ifnum\@tempcnta>\z@%

\@tempdimc contains the distance between columns. We calculate the space
left for the columns with an unknown width.

\@tempdimb will contain the sum of the space between all the columns . . .

156 \@tempdimb\@tempdimc%

157 \multiply\@tempdimb\pc@columncount%

158 \advance\@tempdimb-\@tempdimc%

. . . plus the sum of the width of all columns with a known width:

159 \advance\@tempdimb\@tempdima%

\@tempdima will contain the space for each column with an unknown width:

160 \@tempdima\linewidth%

161 \advance\@tempdima-\@tempdimb%

162 \divide\@tempdima\@tempcnta%

We set the widths of the colums with an unknown width:

163 \count@\z@%

12

164 \loop\ifnum\count@<\pc@columncount%

165 \advance\count@\@ne%

166 \ifnum\csname pc@column@width@\number\count@\endcsname=\z@%

167 \csname pc@column@width@\number\count@\endcsname\@tempdima%

168 \PackageInfo{parcolumns}{Width of column \number\count@%

169 \space calculated as \the\@tempdima}

170 \fi%

171 \repeat%

172 \fi%

173 }

\pc@setsinglecolwidth Usage: \pc@setsinglecolwidth {〈column〉} {〈width〉}.
Sets the width of the column 〈column〉 to the width 〈width〉. Displays an error

message if the column is not valid.

174 \def\pc@setsinglecolwidth#1#2{%

175 \@ifundefined{pc@column@width@\number#1}{

176 \PackageError{parcolumns}{‘#1’ is not a valid column number!}%

177 {\@ehc}%

178 }{%

179 \csname pc@column@width@\number#1\endcsname=#2\relax%

180 }%

181 }

\pc@setcolumnwidth Sets \hsize to the width of a column (stored in \pc@column@width@〈pc@columnctr〉)
and enters horizonal mode.

182 \def\pc@setcolumnwidth{%

183 \hsize\csname pc@column@width@\number\pc@columnctr\endcsname%

184 \linewidth\hsize%

185 \leavevmode%

186 }

Change History

1.0.1
\colchunk@: clubpenalty is always

reset before adding chunks 8
Error handling somewhat im-
proved. 8

Parameter added. 8
1.1

\colchunk: Optional parameter
added. 7

\colchunk@: Optional parameter
added. 8

1.2

\colchunk@: other penalties added 8

\pc@placeboxes: moved parameter
changes from begin of environ-
ment 10

vbadness set 10

vfuzz increased to prevent warn-
ings with math 10

\pc@setcolumnwidth: linewidth
set, too 13

13

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

C
\colchunk 2, 59
\colchunk@ 59, 60
\colplacechunks 3, 54, 82

E
environments:

parcolumns 2, 40

I
\ifpc@rulebetween 3, 114

P
parcolumns (environ-

ment) 2, 40
\pc@alloccolumns 48, 123
\pc@boolkey

. . 5, 18, 21, 25, 32
\pc@columncount . . .

. . . . 2, 46, 66,
68, 70, 96, 111,
125, 144, 157, 164

\pc@columnctr 1, 47,

62, 64, 66, 67,
70, 79, 83, 85, 183

\pc@everypar 4, 22, 77, 86
\pc@placeboxes . . 84, 89
\pc@rulebetweenfalse 41
\pc@setcolumnwidth .

. 78, 182
\pc@setcolumnwidths

. 49, 138
\pc@setsinglecolwidth

. 140, 174

14

