
T
he

 r
an

_t
ok

s
P

ac
ka

ge

AcroTEX.Net

The ran_toks Package
Randomizing the order of tokens

D. P. Story

Copyright © 2021 dpstory@acrotex.net www.acrotex.net
Prepared: June 6, 2021 Version 1.4, 2021/06/06

mailto:dpstory@acrotex.net
www.acrotex.net

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Table of Contents

1 Introduction 3

2 The Preamble and Package Options 3

3 The main commands and environments 4
3.1 The \ranToks command . 4
3.2 The \bRTVToks/\eRTVToks pair of commands 6

• Nested \bRTVToks/\eRTVToks command pairs 8

4 Additional arguments and commands 10

5 Commands to support a DB application 13
5.1 Basic functionality . 13
5.2 Striving for uniqueness of choices . 14

• For documents with a single version . 14
• For documents with multiple versions . 15

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Introduction 3

1. Introduction

This is a short package for randomizing the order of tokens. The package is long
overdue; users of AeB and of eqexam have long asked for a way to randomize the
order of the problems in a test or quiz, or anything for that matter.

 The examples folder contains nine demonstration files:

1. ran-toks.tex reproduces the sample code of this manual.

2. rt-tst-eqe.tex shows how to use ran_toks to randomize the questions of an
exam document created by the eqexam package.

3. rt-tst-qz.tex shows how to randomize choices of a multiple choice field in a
quiz environment of the exerquiz package, when the choices contain verbatim
text.

4. rt-cb.tex is a demonstration of how to use the collectbox package to place
verbatim content into a token list (see \ranToks, Section 3.1).

The next five files concern the DB application and require the usedbapp option, they
are discussed in Section 5.

5. mc-db.tex is an eqexam file, draws from the database files db1.tex, db2.tex,
db3.tex, and db4.tex, to construct the questions of the exam. The questions
are drawn at random from the DB files. Refer to Section 5 for a few more details.

6. mc-dbu.tex is an eqexam file that draws from the database test file, draws from
the database files db1.tex, db2.tex, db3.tex, and db4.tex, to construct the
questions of the exam. However, mc-dbu.tex differs from mc-db.tex for it se-
lects unique questions cross the four versions of the document. Refer to Section 5
for a few more details.

7. viewDB.tex A demo file of how to view the DB files for the purpose of reviewing
the questions, modifying them, or adding to them.

8. mc-dbu-ctrld.tex is a variation on mc-dbu.tex, it is not meant to be compiled
directly, but by the file ctrl-build.tex.

9. ctrl-build.tex is a simple TEX file that controls the compilation of a targeted
file (mc-dbu-ctrld.tex in this example) over the various versions supported by
the targeted file. Try it, you’ll like it. Uses the shellesc package to control the
process.

2. The Preamble and Package Options

The preamble for this package is

\usepackage[〈options〉]{ran_toks}

The one option of ran_toks is usedbapp, which brings in specialized code to support ausedbapp
option

T
he

 r
an

_t
ok

s
P

ac
ka

ge

4

database test application. This option is discussed in Section 5, beginning on page 13.
The requirements for ran_toks are the verbatim package (part of the standard LATEX

distribution, and the macro file random.tex by Donald Arseneau.

3. The main commands and environments

There are two styles for defining a series of tokens to be randomized, using either the
\ranToks command or the \bRTVToks/\eRTVToks pair. Each of these is discussed in
the next two subsections.

3.1. The \ranToks command

The \ranToks command was the original concept; declare a series of tokens to be
randomized.

\ranToks{〈name〉}{%
{〈token1〉}
{〈token2〉}
...
{〈tokenn〉}

}

were 〈tokenk〉 is any non-verbatim content;1 each token is enclosed in braces ({}), this
is required. The 〈name〉 parameter is required, and must be unique for the document; it
is used to build the names of internal macros. Of course several such \ranToks can be
used in the document, either in the preamble or in the body of the document. Multiple
\ranToks commands must have a different 〈name〉 parameter.

After a \ranToks command has been executed, the number of tokens counted is
accessible through the \nToksFor command,

\nToksFor{〈name〉}

The one argument is 〈name〉, and will expand to the total number of tokens listing as
argument in the \ranToks command by the same name.

The \ranToks command does not display the randomized tokens, for that the com-
mand \useRanTok is used.

\useRanTok{〈num〉}
\useRTName{〈name〉}

The argument of \useRanTok is a positive integer between 1 and \nToksFor{〈name〉},
the number of tokens declared by \ranToks, inclusive. There is no space created fol-
lowing the \useRanTok command, so if these are to be used “inline”, enclose them in
braces ({}), for example, {\useRanTok{1}}. The use of \useRTName is optional unless
the listing of the \useRanTok commands is separated from the \ranToks command

1However, for workarounds, see rt-cb.tex and rt-tst-qz.tex.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

The main commands and environments 5

that defined them by another \ranToks command of a different name. That should be
clear!

Consider this example.

\ranToks{myPals}{%
{Jim}{Richard}{Don}
{Alex}{Tom}{J\"{u}rgen}

}

I have 6 pals, they are Jürgen, Richard, Jim, Don, Alex and Tom. (Listed in the order of
best friend to least best friend.) The verbatim listing is,

I have {\nToksFor{myPals}} pals, they are \useRanTok{1},
\useRanTok{2}, \useRanTok{3}, \useRanTok{4}, {\useRanTok{5}}
and \useRanTok{6}.

Notice that \useRanToks are not enclosed in braces for 1–4 because they are each fol-
lowed by a comma; the fifth token, {\useRanTok{5}}, is enclosed in braces to generate
a space following the insertion of the text.

Repeating the sentence yields, “I have 6 pals, they are Jürgen, Richard, Jim, Don,
Alex and Tom”, which is the exact same random order. To obtain a different order, re-
execute the \ranToks command with the same arguments.2 Doing just that, we obtain,
“I have 6 pals, they are Jim, Richard, Don, Jürgen, Tom and Alex.” A new order? An
alternative to re-executing \ranToks is to use the \reorderRanToks command:

\reorderRanToks{〈name〉}

Now, executing \reorderRanToks{myPals} and compiling the sentence again yields,
“I have 6 pals, they are Jim, Richard, Don, Jürgen, Tom and Alex.” For most applications,
re-randomizing the same token list in the same document is not very likely something
you need to do.

The \reorderRanToks{〈name〉} command rearranges the list of tokens associated
with 〈name〉, which may not be what you want; the \copyRanToks command, on the
other hand, makes a (randomized) copy of its first required argument 〈name1〉 and saves
it as 〈name2〉, without effecting the order of 〈name1〉.

\copyRanToks{〈name1〉}{〈name2〉}

Thus, if \copyRanToks{myPals}{myPals1} is executed, the token list name myPals1
contains the names of my pals in another randomized order, while maintaining the
same order of myPals.

My original application for this, the one that motivated writing this package at long
last, was the need to arrange several form buttons randomly on the page. My point is
that the listing given in the argument of \ranToks can pretty much be anything that
is allowed to be an argument of a macro; this would exclude verbatim text created by
\verb and verbatim environments.

2\ranToks{myPals}{{Jim}{Richard}{Don}{Alex}{Tom}{J\"{u}rgen}} in this example.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

The main commands and environments 6

3.2. The \bRTVToks/\eRTVToks pair of commands

Sometimes the content to be randomized is quite large or contains verbatim text. For
this, it may be more convenient to use the \bRTVToks/\eRTVToks command pair. The
syntax is

% <–Begin token listing\bRTVToks{〈name〉}
\begin{rtVW}
〈content1〉

\end{rtVW}
...
...
\begin{rtVW}
〈contentn〉

\end{rtVW}
% <–End token listing\eRTVToks

The \bRTVToks{〈name〉} command begins the (pseudo) environment and is ended by
\eRTVToks. Between these two are a series of rtVW (random toks verbatim write) envi-
ronments. When the document is compiled, the contents (〈contenti〉) of each of these
environments are written to the computer hard drive and saved under a different name
(based on the parameter 〈name〉). Later, using the \useRanTok commands, they are
input back into the document in a random order.

The rtVW environment also writes the command \RTVWHook to the top of the file.\RTVWHook
Its initial value is \relax. It can be redefined with \rtVWHook{〈arg〉}, which expands
to \def\RTVWHook{〈arg〉}.

The use of \useRTName and \useRanTok were explained and illustrated in the pre-
vious section. Let’s go to the examples,

\bRTVToks{myThoughts}
\begin{rtVW}
\begin{minipage}[t]{.67\linewidth}
Roses are red and violets are blue,
I’ve forgotten the rest, have you too?
\end{minipage}
\end{rtVW}
\begin{rtVW}
\begin{minipage}[t]{.67\linewidth}
I gave up saying bad things like
\verb!$#%%%ˆ*%ˆ&#$@#! when I was just a teenager.
\end{minipage}
\end{rtVW}
\begin{rtVW}
\begin{minipage}[t]{.67\linewidth}
I am a good guy, pass it on! The code for this last sentence is,
\begin{verbatim}
%#$% I am a good guy, pass it on! ˆ&*&ˆ*

T
he

 r
an

_t
ok

s
P

ac
ka

ge

The main commands and environments 7

\end{verbatim}
How did that other stuff get in there?
\end{minipage}
\end{rtVW}
\eRTVToks

OK, now, let’s display these three in random order. Here we place them in an enumerate
environment.

1. I gave up saying bad things like $#%%%ˆ*%ˆ&#$@#when
I was just a teenager.

2. Roses are red and violets are blue, I’ve forgotten the
rest, have you too?

3. I am a good guy, pass it on! The code for this last
sentence is,

%#$% I am a good guy, pass it on! ˆ&*&ˆ*

How did that other stuff get in there?

The verbatim listing of the example above is

\begin{enumerate}
\item \useRanTok{1}
\item \useRanTok{2}
\item \useRanTok{3}

\end{enumerate}

The \reorderRanToks works for lists created by the \bRTVToks/\bRTVToks construct.
If we say \reorderRanToks{myThoughts} and reissue the above list, we obtain,

1. Roses are red and violets are blue, I’ve forgotten the
rest, have you too?

2. I am a good guy, pass it on! The code for this last
sentence is,

%#$% I am a good guy, pass it on! ˆ&*&ˆ*

How did that other stuff get in there?

3. I gave up saying bad things like $#%%%ˆ*%ˆ&#$@#when
I was just a teenager.

The command \copyRanToks works for list created by \bRTVToks/\bRTVToks as well.

On the \displayListRandomly command. In the enumerate example immediately
above, the items in the list are explicitly listed as \item \useRanTok{1} and so on; an
alternate approach is to use the command \displayListRandomly, like so,

T
he

 r
an

_t
ok

s
P

ac
ka

ge

The main commands and environments 8

\begin{enumerate}
\displayListRandomly[\item]{myThoughts}

\end{enumerate}

The full syntax for \displayListRandomly is displayed next.

\displayListRandomly[〈prior〉][〈post〉]{〈name〉}

The action of \displayListRandomly is to expand all tokens that are listed in the
〈name〉 token list, each entry is displayed as 〈prior〉\useRanTok{i}〈post〉, where i
goes from 1 to \nToksFor{〈name〉}. In the example above, 〈prior〉 is \item, but
normally, its default is empty. The defaults for 〈prior〉 and 〈post〉 are both empty.

The optional arguments. When only one optional argument is present, if is inter-
preted as 〈prior〉. To obtain a 〈post〉 with no 〈prior〉 use the syntax,

\displayListRandomly[][〈post〉]{〈name〉}
Within each optional argument, the four commands \i, \first, \last, and \lessone
are (locally) defined. The \i command is the index counter of the token currently being
typeset; \first is the index of the first item; \last is the index of the last item; and
\lessone is one less than \last. The two optional arguments and the four commands
may use to perform logic on the token as it is being typeset. For example:

List of pals: \displayListRandomly
[\ifnum\i=\last and \fi]
[\ifnum\i=\last.\else, \fi]{myPals}

yields,

List of pals: Jim, Richard, Don, Jürgen, Tom, and Alex.

The optional arguments are wrapped to the next line to keep them within the margins,
cool.

The example above shows the list of my pals with an Oxford comma. How would
you modify the optional argument to get the same listing without the Oxford comma?
(Jim, Richard, Don, Jürgen, Tom and Alex.) Hint: a solution involves the other command
\lessone.

• Nested \bRTVToks/\eRTVToks command pairs

These is at least one example of using nested \bRTVToks/\eRTVToks. When nested
\bRTVToks/\eRTVToks command pairs, use the rtVWi environment instead of the rtVW
environment. The nested \bRTVToks/\eRTVToks pair is placed within a rtWV environ-placement
ment; in this way the contents of that rtWV environment, itself can be randomized.
The \displayListRandomly (or \useRanTok) command is used to list out the nested
items. See the next page for an example.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

The main commands and environments 9

1. Depth0: Item 5

2. Depth0: Item 3

3. Depth0: Item 2:

• Depth1: Item 3

• Depth1: Item 2

– Depth2: Item 3

– Depth2: Item 2

– Depth2: Item 1

• Depth1: Item 1

4. Depth0: Item 4

5. Depth0: Item 1

The verbatim listing for this example follows.

\bRTVToks{Depth0}
\begin{rtVW}
Depth0: Item 1

\end{rtVW}
\begin{rtVW}
Depth0: Item 2:
\bRTVToks{Depth1} % begin Depth2 within an rtVW env.
\begin{rtVWi}
Depth1: Item 1

\end{rtVWi}
\begin{rtVWi}
Depth1: Item 2
\bRTVToks{Depth2} % begin Depth1 within an rtVWi env.
\begin{rtVWii}

Depth2: Item 1
\end{rtVWii}

\begin{rtVWii}
Depth2: Item 2

\end{rtVWii}
\begin{rtVWii}

Depth2: Item 3
\end{rtVWii}

\eRTVToks
\begin{itemize}

\displayListRandomly[\item]{Depth2} % display Depth2 toks
\end{itemize}
\end{rtVWi}

\begin{rtVWi}
Depth1: Item 3

\end{rtVWi}
\eRTVToks

T
he

 r
an

_t
ok

s
P

ac
ka

ge

10

\begin{itemize}
\displayListRandomly[\item]{Depth1} % display Depth1 toks
\end{itemize}
\end{rtVW}
\begin{rtVW}

Depth0: Item 3
\end{rtVW}
\begin{rtVW}

Depth0: Item 4
\end{rtVW}
\begin{rtVW}

Depth0: Item 5
\end{rtVW}
\eRTVToks
\begin{enumerate}
\displayListRandomly[\item]{Depth0} % display Depth0 toks
\end{enumerate}

Oops. Did I forget to mention that ran_toks supports nested to a depth of two.
Some authors like to indent nested things, but to avoid spurious spaces appearing,

\end{rtVW} (and \end{rtVWi}) should be placed in the far left margin, as shown above.
Recall the rtVW is a verbatim environment.

The above example is reproduced in the ran_toks.tex sample file found in the
examples folder. Also found in that folder is nested-matching.tex, a exerquiz quiz
that motivated creating nested \bRTVToks/\eRTVToks command pairs.

4. Additional arguments and commands

The syntax given earlier for \useRanTok was not completely specified. It is,

\useRanTok[〈name〉]{〈num〉}

The optional first parameter specifies the 〈name〉 of the list from which to draw a ran-
dom token; 〈num〉 is the number of the token in the range of 1 and \nToksFor{〈name〉},
inclusive. The optional argument is useful in special circumstances when you want to
mix two random lists together.

To illustrate: Jim, I am a good guy, pass it on! The code for this last sentence
is,

%#$% I am a good guy, pass it on! ˆ&*&ˆ*

How did that other stuff get in there?

The verbatim listing is

To illustrate: \useRanTok[myPals]{1}, \useRanTok[myThoughts]{2}

The typeset version looks a little strange, but recall, the text of myThoughts were each
put in a minipage of width .67\linewidth. Without the minipage, the text would
wrap around normally.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Additional arguments and commands 11

Accessing the original order. The original order of the list of tokens is not lost, you
can retrieve them using the command \rtTokByNum,

\rtTokByNum[〈name〉]{〈num〉}

This command expands to the token declared in the list named 〈name〉 that appears
at the 〈num〉 place in the list. (Rather awkwardly written.) For example, my really best
pals are Don and Alex, but don’t tell them. The listing is,

For example, my really best pals are {\rtTokByNum[myPals]{3}}
and \rtTokByNum[myPals]{4}, but don’t tell them.

In some sense, \rtTokByNum[〈name〉] acts like a simple array, the length of which is
\nToksFor{〈name〉}, and whose kth element is \rtTokByNum[〈name〉]{〈k〉}.

Turning off randomization. The randomization may be turned off using \ranToksOff
or turned back on with \ranToksOn.

\ranToksOff \ranToksOn

This can be done globally in the preamble for the whole of the document, or in the body
of the document just prior to either \ranToks or \bRTVToks. For example,

\ranToksOff
\ranToks{integers}{ {1}{2}{3}{4} }
\ranToksOn

As a check, executing ‘\useRanTok{3} = \rtTokByNum{3} = 3’ yields ‘3 = 3 = 3’? As
anticipated.

To create a non-randomized list of tokens that already have been created (and ran-
domized), use \copyRanToks:

\ranToksOff\copyRanToks{myPals}{myOriginalPals}\ranToksOn

Then, using \displayListRandomly in a clever way,

\displayListRandomly[\ifnum\i=\last\space and \fi(\the\i)˜]
[\ifnum\i=\last.\else,\fi\space]{myOriginalPals}

we obtain: (1) Jim, (2) Richard, (3) Don, (4) Alex, (5) Tom, and (6) Jürgen. The original
list for myPals remains unchanged: (1) Jim, (2) Richard, (3) Don, (4) Jürgen, (5) Tom,
and (6) Alex.

The \useRanTok command—whether it operates on a randomized token list or not—
behaves similarly to an array. Thus, if we wanted to extract the third entry of the non-
randomized token list (array) myOriginalPals, we do so by expanding the command
\useRanTok[myOriginalPals]{3} to produce Don.

Document preparation. The command \ranToksOff is probably best in the pream-
ble to turn off all randomization while the rest of the document is being composed.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Additional arguments and commands 12

The ran_toks auxiliary file. The package writes to a file named \jobname_rt.sav,
below represents two typical lines in this file.

1604051353 % initializing seed value
5747283528 % last random number used

The first line is the initializing seed value used for the last compilation of the document;
the second line is the last value of the pseudo-random number generator used in the
document.

Normally, the pseudo-random number generator provided by random.tex produces
a new initial seed value every minute. So if you recompile again before another minute,
you’ll get the same initial seed value.

Controlling the initial seed value. To obtain a new initial seed value each time you
compile, place \useLastAsSeed in the preamble.

\useLastAsSeed

When the document is compiled, the initial seed value taken as the second line in
the \jobname_rt.sav file, as seen in the above example. With this command in the
preamble, a new set of random numbers is generated on each compile. If the file
\jobname_rt.sav does not exist, the generator will be initialized by its usual method,
using the time and date.

The command \useThisSeed allows you to reproduce a previous pseudo-random
sequence.

\useThisSeed{〈init_seed_value〉}

This command needs to be placed in the preamble. The value of 〈init_seed_value〉
is an integer, normally taken from the first line of the \jobname_rt.sav file.

When creating tests (possibly using eqexam), the problems, or contiguous collec-
tions of problems, can be randomly ordered using the \bRTVToks/\eRTVToks com-
mand pair paradigm. For example, suppose there are two classes and you want a ran-
dom order (some of) the problems for each of the two classes. Proceed as follows:

1. Compile the document, open \jobname_rt.sav, and copy the first line (in the
above example, that would be 1604051353).

2. Place \useThisSeed{1604051353} in the preamble. Compiling will bring back
the same pseudo-random sequence very time.

3. Comment this line out, and repeat the process (use \useLastAsSeed to generate
new random sequences at each compile) until you get another distinct random-
ization, open \jobname_rt.sav, and copy the first line again, say its 735794511.

4. Place \useThisSeed{735794511} in the preamble.

5. Label each

T
he

 r
an

_t
ok

s
P

ac
ka

ge

13

%\useThisSeed{1604051353} % 11:00 class
%\useThisSeed{735794511} % 12:30 class

To reproduce the random sequence for the class, just uncomment the random
seed used for that class.

If you are using eqexam, the process can be automated as follows:

\vA{\useThisSeed{1604051353}} % 11:00 class
\vB{\useThisSeed{735794511}} % 12:30 class

Again, this goes in the preamble.

5. Commands to support a DB application

The commands described in this section are only available with the usedbapp option,

\usepackage[usedbapp]{ran_toks}

This option was designed for an eqexam document.

5.1. Basic functionality

The premise here is that you have an eqexam document (a test) and you have a series of
standard questions you ask students. Over the years, you have accumulated questions
of a similar type that you like to pose to your students. The questions of a similar type
are placed in a DB test file. For example, you have a file named db1.tex containing
questions on a certain narrow topic. The format for this file is,

%
% Questions on some narrow topic
%
\bRTVToks{DB1} %<-DB 〈name〉
\begin{rtVW}
% an eqexam question is contained in this rtVW environment
\end{rtVW}
\begin{rtVW}
% an eqexam question is contained in this rtVW environment
\end{rtVW}
...
\eRTVToks

Refer to the file db1.tex, db2.tex,…, db4.tex for more specific examples. The DB
〈name〉 must be unique among all the DB test files used.

The next step is to input your DB files. To do this, execute either of the commands
\useTheseDBs or \useProbDBs prior to the opening of an exam environment (eqexam),
or perhaps in the preamble. The syntax is,

\useTheseDBs{〈db1〉,〈db2〉,...,〈dbn〉}
(An alias for \useTheseDBs)\useProbDBs{〈db1〉,〈db2〉,...,〈dbn〉}

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Commands to support a DB application 14

The argument of \useTheseDBs is a comma-delimited list of file names. Each file name
contains a \bRTVToks/\eRTVToks construct. Within this pair are rtVW environments,
as described in Section 3.2. The \useTheseDBs command inputs the files listed in
its comma-delimited argument; a warning is emitted if one or more of the files are
not found. The default extension is .tex, \useTheseDBs{db1,db2} inputs the files
db1.tex and db2.tex, if they exist, while \useTheseDBs{db1.def,db2.db} inputs
the files db1.def and db2.db, if they exist. The command \useProbDBs is an alias for
\useTheseDBs.

Once the database files have been input, in the body of the document you can extract
questions using \useRanTok; for example, \useRanTok[DB1]{1} extracts the question
with an index of 1 from the database file DB1;3 \useRanTok[DB2]{2} extracts the
question with an index of 2 from the database file DB2, and so on.

Refer to the demonstration file mc-db.tex for an example.

5.2. Striving for uniqueness of choices

By default, when you expand \useRanTok{1} and later you expand \useRanTok{1}
again you get the exact same result;4 this is the normal behavior. However, in the
context of posing questions from a database of questions, repeating the questions is
not what is wanted necessarily. In the next two subsections, we speak to the problem,
first within a single-version document, and secondly, within a multi-version document.

• For documents with a single version

The issue of not wanting to repeat a question from a database comes up when you want
to pose several questions from a given database file. We illustrate using the demo file
mc-db.tex found in the examples folder. In that file, the exam has two parts, as shown
in Figure 1.5 For Part1, we take two problems (at random) from DB1. In Part2, we take

\begin{Part1}
\useRanTok[DB1]{1}
\useRanTok[DB1]{2}
\end{Part1}

% An alternate approach% First approach
% \begin{Part2}\begin{Part2}
% \useRanTok[DB1]{3}\useRanTok[DB1]{1}
% \useRanTok[DB1]{4}\useRanTok[DB1]{2}
% \end{Part2}\end{Part2}

Figure 1: Simplified two-part exam

two problems again from DB1; these two will be the same as the ones chosen from Part1.
To get two different questions the natural approach is to write \useRanTok[DB1]{3}

3It is assumed that DB1 is the 〈name〉 is the required argument of \bRTVToks, which is declared in the
db1.tex file.

4Here, we are assuming the 〈name〉 of the token list is the same for both expansions of \useRanTok{1}.
5The verbatim listing here has been simplified.

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Commands to support a DB application 15

and \useRanTok[DB1]{4}, as shown on the right in Figure 1. Now, returning to the
First approach, there is a way of forcing ran_toks to choose two different question even
though the indexes used are the same.

To have different questions appear when you specify \useRanTok[DB1]{1} and
\useRanTok[DB1]{2}, first expand the command \uniqueXDBChoicesOn, perhaps be-
tween parts or in the preamble. When \uniqueXDBChoicesOn is expanded, \useRanTok
tries to find an “unused” choice.

\uniqueXDBChoicesOn
\begin{document}
...
\begin{Part1}
\useRanTok[DB1]{1}
\useRanTok[DB1]{2}
\end{Part1}

%\uniqueXDBChoicesOn

\begin{Part2}
\useRanTok[DB1]{1}
\useRanTok[DB1]{2}
\end{Part2}

The command \uniqueXDBChoicesOff turns off the feature of striving to find “un-
used” choices. Additional discussion on \uniqueXDBChoicesOn is found in the next
section; the command \InputUsedIDs, discussed in the next section, is not needed
when the eqexam document does not have multiple versions. You can experiment with
striving to find unused questions in the demo file mc-db.tex.

• For documents with multiple versions

The scheme outlined in Section 5.1 works well for an eqexam document that only has
one version in the source file. The way ran_toks works, it will not repeat random
choices — unless you sample from a same DB file more times than there are prob-
lems in that file; for example, suppose db1.tex has two questions in it, if you ex-
ecute \useRanTok[DB1]{1}, \useRanTok[DB1]{2}, and \useRanTok[DB1]{3}, then
the problem selected by \useRanTok[DB1]{3} is the same as \useRanTok[DB1]{1}.
This latter situation is not likely, is it?

One of the very powerful features of eqexam is that a single source file can have
multiple versions in it.

\examNum{1}
\numVersions{4}
\forVersion{a} % a, b, c, d
\vA{\useThisSeed{54356}}
\vB{\useThisSeed{577867}}
\vC{\useThisSeed{6746788}}
\vD{\useThisSeed{856785}}

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Commands to support a DB application 16

The above shows how to set up a multi-version eqexam document, see the eqexam
documentation for more details. Here, as in the demo file mc-dbu.tex, we declare 4
versions (a, b, c, and d). \forVersion{a} declares the next compile is for version a (or
A, either one). List also is a method of passing an initial seed to the pseudo-random
number generator, for each version. (These can be arbitrarily typed in, or obtained by
the methods discussed in Controlling the initial seed value on page 12.)

The problem. For a multi-version eqexam document, where each version samples from
the same set of DB Test files, later versions of the exam may have questions that are
repeats of the ones posed in earlier versions of the same source file. This may or may
not be a problem if the different versions are given to different classes at approximately
the same time where there is no opportunity for the details of the test to “leak out”
from one class to another.

The solution. The solution to this problem requires the introduction of several new
commands.

% there is also \uniqueXDBChoicesOff (the default)\uniqueXDBChoicesOn
% preamble only (required)\InputUsedIDs
% to view the IDs of problems used%\viewIDstrue

The \uniqueXDBChoicesOn command brings some special code into the \useRanTok
command; this special code tries to select problems that have not already been selected
by earlier versions of the source document. Key to this selection process is that the
special code needs to know which questions were earlier selected; that is the role of the
\InputUsedIDs. This latter command uses the value declared in \numVersions, so it
must appear after the declaration of the number of versions.

When \uniqueXDBChoicesOn is expanded, as the source document is compiled, an
auxiliary file named \jobname-ver〈Ltr〉.cut is written. This file keeps a record of
the problem ID of the problems selected, believe it or not. \InputUsedIDs inputs the
appropriate CUT files:

• for version B, \jobname-verA.cut is input;

• for version C, \jobname-verA.cut, \jobname-verB.cut are input;

• for version D, \jobname-verA.cut, \jobname-verB.cut, \jobname-verC.cut
are input;

• and so on.

In this way, when you compile version 〈Ltr〉, the document inputs all the information
it needs about previous versions to make in informed choice.

Workflow. When compiling a multi-version eqexam document, do the following:

1. Build each version in alphabetical order, that is, compile with \forVersion{a},
then \forVersion{b}, and so on.

2. Rename PDF produced to reflect the version 〈Ltr〉; eg, \jobname-verA.pdf or
\jobname-sec02.pdf, or whatever.6

6The demo file ctrl-build.tex shows how to build all versions and rename the final PDF files all from

T
he

 r
an

_t
ok

s
P

ac
ka

ge

Commands to support a DB application 17

Now, I simply must get back to my retirement. DPS

one controlling file.

	Table of Contents
	1 Introduction
	2 The Preamble and Package Options
	3 The main commands and environments
	3.1 The \ranToks command
	3.2 The \bRTVToks/\eRTVToks pair of commands
	• Nested \bRTVToks/\eRTVToks command pairs

	4 Additional arguments and commands
	5 Commands to support a DB application
	5.1 Basic functionality
	5.2 Striving for uniqueness of choices
	• For documents with a single version
	• For documents with multiple versions

