
Hacking Linux-Powered
Devices
Stefan Arentz

<stefan@soze.com>

Part I
Introduction

What is Embedded Linux?

Embedded usually means that it is a device
with limited and specialized capabilities. It is
not a ‘personal computer’ as your laptop or

PC on your desk.

Embedded Linux means that there is a Linux
kernel running on such a device.

Usually together with a combination of
proprietary software and other OSS

components running on top of that kernel.
(The “user space” parts.)

Example: an imaginary portable
DivX player

 PID Uid VmSize Stat Command
 1 0 396 S init
 2 0 4829 S mplayer

Process listing of an imaginary portable DivX player

This could be a real world example, sometimes it really is
this simple.

(From a Linux POV)

Hardware: CPU, RAM, Flash card, screen, bunch of buttons.

Some Real Examples of
Linux-Powered Devices

TomTom GO
GPS Navigation

DreamBox
Digital TV/Radio Tuner

Linksys WRT54G
Wireless AP

Linux is a paradigm shift for hardware
vendors

• They have to trust a “community work”
• They have to publish (parts of) their own work (‘The

GNU GPL Revisited’ lecture)
– There is still the ‘object code only kernel modules’ thing

• They are moving away from proprietary embedded
operating systems
– Great because those were closed

End Result for “Us”

Access to a product’s source code: at least
the kernel source and other OSS components

used.

Easier to reverse engineer the closed parts
and easier to hack and modify the device as a

whole.

Part II
Breaking the EULA

Real World Example

First things First

Share Your Work and Research

Start a Wiki!

Example - Linksys WRT54G

Our Goal

Get access to the contents of the (read-only)
filesystem that is embedded in the firmware.

If we can do this then we have basically opened up
the device; we can modify it’s default behavior and

add our own modifications.

Understand the hardware

• Opening the box will void the warranty!
• Be careful, electricity can kill you!
• Static electricity can kill the device!

• Look at relations and connections between
parts, connectors and things like switches.

• Look at part numbers (gooooogle them)

Goooooogle for the Datasheets

• Most vendors have them online (PDF)
• You don’t have to understand it all,

electronics is a different discipline
• But it helps you to understand the

device better
• And … you might find surprises!

CPU/ETH
RAM

FLASH

WIFI

ETH SWITCH
POWER

RADIO

Back to our Goal: Hacking the
Firmware Image

Compressed File System
(CRAMFS)

Compressed Kernel

Header

Firmware Image Header
% hexdump -C ~/WRT54G_1.30.1_US_code.bin
00000000 57 35 34 47 00 00 00 00 03 06 17 01 1e 01 55 32 |W54G..........U2|
00000010 4e 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |ND..............|
00000020 48 44 52 30 00 d0 29 00 78 53 6c d5 00 00 01 00 |HDR0.?).xSl?....|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

struct trx_header {
 uint32_t magic; /* "HDR0" */
 uint32_t len; /* Length of file including header */
 uint32_t crc32; /* 32-bit CRC */
 uint32_t flag_version; /* 0:15 flags, 16:31 version */
 uint32_t offsets[3]; /* Offsets of sections */
};

Extract the Kernel and
CRAMFS

Extract the file system (from the end)
% dd if=code.bin of=cramfs bs=1c skip=786464

Extract the kernel (from the beginning, skip the header)
% dd if=code.bin of=kernel bs=1c skip=32 \
 count=786432

Mount the CRAMFS section
% sudo mount -o loop cramfs.section /mnt

% ls -l /mnt
drwxr-xr-x 1 root root 444 1970-01-01 01:00 bin/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 dev/
drwxr-xr-x 1 root root 88 1970-01-01 01:00 etc/
drwxr-xr-x 1 root root 164 1970-01-01 01:00 lib/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 mnt/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 proc/
drwxr-xr-x 1 root root 292 1970-01-01 01:00 sbin/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 tmp/
drwxr-xr-x 1 root root 64 1970-01-01 01:00 usr/
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 var -> tmp/var
drwxr-xr-x 1 root root 1328 1970-01-01 01:00 www/

ls -l /mnt/bin
-rwxr-xr-x 1 root root 268408 1970-01-01 01:00 busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 cat -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 chmod -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 cp -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 date -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 dd -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 df -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 echo -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 false -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 grep -> busybox*

file /mnt/bin/busybox
bin/busybox: ELF 32-bit LSB MIPS-I executable, MIPS,
 version 1 (SYSV), for GNU/Linux 2.3.99,
 dynamically linked (uses shared libs), stripped

% ls -l /mnt/lib
-rwxr-xr-x 1 root root 140264 1970-01-01 01:00 ld.so.1*
-rwxr-xr-x 1 root root 35180 1970-01-01 01:00 libcrypt.so.1*
-rwxr-xr-x 1 root root 871936 1970-01-01 01:00 libc.so.6*
-rwxr-xr-x 1 root root 15460 1970-01-01 01:00 libdl.so.2*
-rwxr-xr-x 1 root root 13564 1970-01-01 01:00 libm.so.6*
-rwxr-xr-x 1 root root 13564 1970-01-01 01:00 libnsl.so.1*
drwxr-xr-x 1 root root 20 1970-01-01 01:00 modules/

% strings /mnt/lib/libc.so.6 | grep GLIBC
GLIBC_2.2.3

Building a Toolchain (Optional)
Now that we know …

•The processor architecture (MIPS-I/LSB)
•The C Library used (glibc2 2.2.4)

… we can build a compatible toolchain. Building cross
compilers is complex, but “crosstool” will handle all details
for you. It even comes with an example script for the
WRT54G!

% cd crosstool-0.28
% ./demo-mipsel.sh

Crosstool supports many other configurations too.

Modify and Regenerate the
CRAMFS image

Make a copy of the file system
% cp --archive /mnt ~/newrootfs

Add a new server, make changes …
% cp myserver ~/newrootfs/usr/sbin/
% chmod 755 usr/sbin/myserver

Change our copy back into a cramfs image
% cd ~/newrootfs
% mkcramfs . ~/newcramfs

Regenerate the Firmware Image

A scripting language is your friend for quick hacks like this.

% ./make-firmware-image.rb kernel newcramfs > code.bin

The script simply takes the kernel and the
CRAMFS sections and creates a new
firmware image with a header with the right
CRC32 checksum. Compressed File System

(CRAMFS)

Compressed Kernel

Header

You can then upload this new firmware image to the
WRT54G and use it. Hack done!

Conclusion

• Hacking Linux-Powered devices is
definitely possible. Be creative and
persistent!

• Don’t underestimate the power of a
collective effort. Sharing is key.

References

• http://www.openwrt.org
• http://www.opentom.org

• Google for ‘embedded
linux’

Q&A

