Hacking Linux-Powered
Devices

Stefan Arentz
<stefan@soze.com>

Part |

Introduction
What is Embedded Linux?

Embedded usually means that it is a device

with limited and specialized capabilities. It is

not a ‘personal computer’ as your laptop or
PC on your desk.

Embedded Linux means that there is a Linux
kernel running on such a device.

Usually together with a combination of
proprietary software and other OSS
components running on top of that kernel.
(The “user space” parts.)

Example: an imaginary portable
DivX player

(From a Linux POV)

Hardware: CPU, RAM, Flash card, screen, bunch of buttons.

Process listing of an imaginary portable DivX player

PID Uid VmSize Stat Command
1 0 396 S init
2 0 4829 S mplayer

This could be a real world example, sometimes it really is
this simple.

Some Real Examples of
Linux-Powered Devices

TomTom GO
GPS Navigation

DreamBox

Digital TV/Radio Tuner

Linksys WRT54G
Wireless AP

Linux is a paradigm shift for hardware
vendors

* They have to trust a “community work”

« They have to publish (parts of) their own work (‘The
GNU GPL Reuvisited’ lecture)

— There is still the ‘object code only kernel modules’ thing

« They are moving away from proprietary embedded
operating systems
— Great because those were closed

End Result for “Us”

Access to a product’s source code: at least
the kernel source and other OSS components
used.

Easier to reverse engineer the closed parts
and easier to hack and modify the device as a
whole.

Part ||

Breaking the EULA
Real World Example

First things First

Share Your Work and Research

Start a Wiki!

Example - Linksys WRT54G

N

wrt54g_2.02.7_code.bin

Our Goal

Get access to the contents of the (read-only)
filesystem that is embedded in the firmware.

If we can do this then we have basically opened up
the device; we can modify it's default behavior and
add our own modifications.

Understand the hardware

Opening the box will void the warranty!
Be careful, electricity can kill you!
Static electricity can kill the device!

Look at relations and connections between
parts, connectors and things like switches.

Look at part numbers (gooooogle them)

Goooooogle for the Datasheets

Most vendors have them online (PDF)

You don’t have to understand it all,
electronics is a different discipline

But it helps you to understand the
device better

And ... you might find surprises!

SOSBL RISCIL-D

Bl BRLRERIG-RE L

.

R R ERgeErTpRE FEEE B Tr R e
y - ¥ [}

chai ""':‘ﬁ‘i‘_.i'_”—h
e
LT B LR

.—
.
T atL

__':#-I-II.=II:-
[
K

T

g

CETEL R RE R RALL

| E
: =0
R S
h:llh'r::j :
g T
TR S
.I-HJJ'J?JJ-I-;-.LI-JJ

B FOERIPD
CRD34AT P1D

o |

b=

| e aam
AR A

s
=¥

=
*

§
Fi‘
-
e
=
-]

-
Y
5

e
o B

e g
T

=11 revco - rerco .
o | XrZOLLHOZ l“ WrZOLLAOZ l.nrl
o iAo 3 k- 8- IR T T

SOERE 1ESCI1-07
Bl BRLRLIVE=-R% L

l,”-l-ll.=lli-

.o P
* | 5

j.lf]j'h!?aa.l.;..i..'l.lﬂ.'
- w
- "'—i.‘.iﬁli'
el e L

EHENS SRS]
"] 1]'
e

TR S S .
5 5 RS PR R AT R R RS CERE Ll e
y - ¥ [}

Ma s a
s FEFERTER

. 1

FNEE

5
Lrl.l'r 'y

I‘I'l‘ll‘l!l

;.-!'.Hlm

popEE AN

Al

:fl'!l:ll..ldﬁ'ﬂ
< C *'!‘rj-rr Ll

revco

ui

rerco
‘.'I:I‘Eﬂl-ldﬂ'!' LI'I

-1 E e

"'_I

TTTINEEITE

Back to our Goal: Hacking the
Firmware Image

. Header

Compressed Kernel

Compressed File System
(CRAMFS)

wrt54g_2.02.7_code.bin

Firmware Image Header

|
Q

% hexdump

00000000 57 35 34 47 00 00 00 0O
00000010 4e 44 00 00 00 00 00 OO

struct trx header {

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

magic;

len;

crc32;

flag version;
offsets[3];

~/WRT54G 1.30.1 US code.bin

03 06 17 01 le 01 55 32 |W54G...ceec... U2 |
00 00 00 00 00 00 00 00 |NDuu:wewuweeoononn |
00000020 48 44 52 30 00 dO 29 00 78 53 6¢c d5 00 00 01 00 |HDRO.?).xSl?....|
00000030 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 |.eeeeeeeeeeeennnn |

/*
/*
/*
/*
/*

"HDRO" */

Length of file including header */
32-bit CRC */

0:15 flags, 16:31 version */
Offsets of sections */

Extract the Kernel and
CRAMFS

Extract the file system (from the end)
% dd if=code.bin of=cramfs bs=1c skip=786464

Extract the kernel (from the beginning, skip the header)
$ dd if=code.bin of=kernel bs=1c skip=32 \
count=786432

Mount the CRAMFS section

% sudo mount -o loop cramfs.section /mnt

% 1ls -1 /mnt

o

drwxr-xr-x 1 root root 444 1970-01-01 01:00 bin/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 dev/
drwxr-xr-x 1 root root 88 1970-01-01 01:00 etc/
drwxr-xr-x 1 root root 164 1970-01-01 01:00 lib/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 mnt/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 proc/
drwxr-xr-x 1 root root 292 1970-01-01 01:00 sbin/
drwxr-xr-x 1 root root 0 1970-01-01 01:00 tmp/
drwxr-xr-x 1 root root 64 1970-01-01 01:00 usr/
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 var -> tmp/var
drwxr-xr-x 1 root root 1328 1970-01-01 01:00 www/

1ls -1 /mnt/bin
-rwxXr-xr-x 1 root root 268408 1970-01-01 01:00 busybox*

lrwxrwxrwx 1 root root 7 1970-01-01 01:00 cat -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 chmod -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 cp -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 date -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 dd -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 df -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 echo -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 false -> busybox*
lrwxrwxrwx 1 root root 7 1970-01-01 01:00 grep -> busybox*

file /mnt/bin/busybox

bin/busybox: ELF 32-bit LSB MIPS-I executable, MIPS,
version 1 (SYSV), for GNU/Linux 2.3.99,
dynamically linked (uses shared libs), stripped

$ 1s -1 /mnt/1lib

-rwxr-xr-x 1 root root 140264 1970-01-01 01:00 1ld.so.1l%*
—IWXr-Xr-X root root 35180 1970-01-01 01:00 libcrypt.so.l*
—-YWXr-Xr-x root root 871936 1970-01-01 01:00 libc.so.6%*
—-YWXr-Xr-x root root 15460 1970-01-01 01:00 libdl.so.2*
—rwXr-Xr-XxX root root 13564 1970-01-01 01:00 libm.so.6%*
—rwXr-Xr-XxX root root 13564 1970-01-01 01:00 libnsl.so.l%*
drwxr-xr-x root root 20 1970-01-01 01:00 modules/

= I = By

% strings /mnt/lib/libc.so.6 | grep GLIBC
GLIBC 2.2.3

Building a Toolchain (Optional)

Now that we know ...

*The processor architecture (MIPS-I/LSB)
*The C Library used (glibc2 2.2.4)

... we can build a compatible toolchain. Building cross
compilers is complex, but “crosstool” will handle all details
for you. It even comes with an example script for the
WRT54G!

% cd crosstool-0.28
% ./demo-mipsel.sh

Crosstool supports many other configurations too.

o° Ik

o0 o0 Ik

o0 o0 Ik

Modify and Regenerate the
CRAMFS image

Make a copy of the file system
cp --archive /mnt ~/newrootfs

Add a new server, make changes ..
cp myserver ~/newrootfs/usr/sbin/
chmod 755 usr/sbin/myserver

Change our copy back into a cramfs image
cd ~/newrootfs
mkcramfs . ~/newcramfs

a1l 3

t+he usual suspects

Regenerate the Firmware Image

A scripting language is your friend for quick hacks like this.

% ./make-firmware-image.rb kernel newcramfs > code.bin

The script simply takes the kernel and the Header

CRAMPFS sections and creates a new
firmware image with a header with the right

CRC32 checksum. Compressed File System
(CRAMFS)

Compressed Kernel

You can then upload this new firmware image to the
WRT54G and use it. Hack done!

Conclusion

* Hacking Linux-Powered devices is
definitely possible. Be creative and
persistent!

* Don’t underestimate the power of a
collective effort. Sharing is key.

References

CONCEPTS, TECHNIQUES, TRICKS, AND TRAPS

 http://www.openwrt.org

Building Embedded

 http://www.opentom.org
LINUX

SYSTE

« Google for ‘embedded
linux’

