
Berlin, Germany - 29.12.20041

Risk Advisory Services

Sebastian Wolfgarten,
21C3, December 2004
sebastian.wolfgarten@de.ey.com

Apache Security -
Improving the security of your web server by breaking into it

mailto:sebastian.wolfgarten@de.ey.com

Berlin, Germany - 29.12.2004Risk Advisory Services2

Agenda

• Preface
• Introduction to Apache
• History of vulnerabilities
• Basic principles of Apache security
• Configuration analysis
• Advanced Apache security
• Demonstration
• Summary
• References

Berlin, Germany - 29.12.2004Risk Advisory Services3

Preface
$ whoami
• Student of business & computer science at the

University of Cooperative Education in
Stuttgart/Germany

• Working with Ernst & Young’s Risk Advisory Services
(RAS) group for more than 2 years

• Specialized in network security, pen-testing and IT
forensics

• Author of more than a dozen articles for various
German IT magazines as well as three books (e.g.
“Apache Webserver 2”) for the Addison & Wesley
publishing house

• Reviewer for Addison & Wesley and O’Reilly US

Berlin, Germany - 29.12.2004Risk Advisory Services4

Introduction to Apache
There are many cowboys, but there is only one Apache

• Originally based on the NCSA httpd 1.3 written
by Rob McCool (University of Illinois) and for
the first time published in April 1995

• Powerful, modular, flexible, highly configurable,
extensible and freely available Open Source
web server

• Apache currently runs on approx. 68% of all
web servers worldwide making it the #1 choice
ever since 1996

Berlin, Germany - 29.12.2004Risk Advisory Services5

Introduction to Apache (cont.)
There are many cowboys, but there is only one Apache

• Currently three different version branches
(1.3.x, 2.0 and 2.1) available whereas only 2.0
and 2.1 are being actively developed

• 1.3.x is proven most stable but is feature-wise
frozen (only bug-fixing)

• 2.x introduces a bunch of cutting-edge features
including various runtime-models (MPMs),
multi protocol support, APR, IPv6, in- and
output filtering etc.

Berlin, Germany - 29.12.2004Risk Advisory Services6

History of vulnerabilities
Buffer overflows and various other vulnerabilities
• In the past Apache (and its modules) suffered from

various locally and remotely exploitable vulnerabilities
including (digest):
– mod_include Local Buffer Overflow Vulnerability (published: 20.10.2004,

CVE: CAN-2004-0940)
– mod_ssl SSLCipherSuite Restriction Bypass Vulnerability (published:

11.10.2004, CVE: CAN-2004-0885)
– mod_proxy Remote Negative Content-Length Buffer Overflow Vulnerability

(published: 10.06.2004, CVE: CAN-2004-0492)
– Satisfy Directive Access Control Bypass Vulnerability (published:

23.09.2004, CVE: CAN-2004-0811)
– mod_userdir Module Information Disclosure Vulnerability (published:

04.12.2003, CVE: n/a)
• However as a consequence of its design there hasn’t

been a single r00t vulnerability in Apache.

Berlin, Germany - 29.12.2004Risk Advisory Services7

Basic principles of Apache security
Non-Apache related system security (digest)

• Host and system security is an important part
of any (Apache) installation.

• Therefore minimize a server's exposure to
current and future threats by fully configuring
the operating system and removing
unnecessary applications.

• Verify the authenticity and integrity of all
software products used.

• Ensure to install the latest patches and
versions available.

Berlin, Germany - 29.12.2004Risk Advisory Services8

Basic principles of Apache security
Non-Apache related system security (cont.)
• Disable or restrict unnecessary system

services
• Use strong encryption
• Use strong passwords and strong password

policies
• Remove default accounts, change default

passwords
• Apply OS hardening procedures
• Use firewalls/IDSs
• ….

Berlin, Germany - 29.12.2004Risk Advisory Services9

Basic principles of Apache security
Security-related Apache configuration directives

• Apache provides quite a number of security-
related configuration directives enabling the
administrator to tighten the security, e.g.:
– User / Group: Defines the user and group Apache

should run as
– AllowOverride: Types of directives allowed in external

configuration files (aka .htaccess files)
– LimitRequestBody: Restricts the total size of the HTTP

request body sent from a client
– LimitRequestFields: Limits the number of HTTP request

header fields that will be accepted from the client

Berlin, Germany - 29.12.2004Risk Advisory Services10

Basic principles of Apache security
Security-related Apache configuration directives (cont.)

• Furthermore:
– LimitRequestFieldSize: Limits the size of the HTTP

request header allowed from the client
– LimitRequestLine: Limits the overall size of the HTTP

request line that will be accepted
– Listen: Defines the IP addresses and ports the server

listens on
– Options: Configures what features are available in a

particular directory
– Order: Controls the default access state and the order in

which Allow and Deny are evaluated

Berlin, Germany - 29.12.2004Risk Advisory Services11

Basic principles of Apache security
Security-related Apache configuration directives (cont.)
• Finally there is:

– Proxy: Container for directives applied to proxied
resources

– ServerTokens: Configures the Server HTTP response
header

– ServerSignature: Defines the content of the footer
available on server-generated documents

– SSLEngine: This directive toggles the usage of the
SSL/TLS protocol engine

– UserDir: Indicates the location of user-specific
directories

– AuthDigestFile: Use HTTP Digest Authentication

Berlin, Germany - 29.12.2004Risk Advisory Services12

Basic principles of Apache security
The do’s and don’ts of httpd.conf
• User & Group directive:

– Unix/Linux: Create a separate user and group to run the Apache,
disable the login for that user and assign a non-existing home
directory (e.g. useradd -g wwwgroup -d /dev/null -s /bin/false
wwwuser)

– Windows 2003 Server: Things on Microsoft Windows are a bit more
complicated as the User and Group directive does not exist:
• Install Apache as a service into a separate directory (e.g. C:\Apache2)

and add a new group as well user to the system.
• Assign a strong password, do not give the user the permission to

change his password.
• Add that user to the newly created group and remove it from all other

groups (e.g. Users).
• Ensure the user is not able to login remotely using Terminal Services,

do not connect client drives or printers, do not grant the user access to
the main (default) printer and deny any remote access.

• Most importantly start the Apache service as that user instead of the
Local System account.

Berlin, Germany - 29.12.2004Risk Advisory Services13

Basic principles of Apache security
The do’s and don’ts of httpd.conf (cont.)
• File & directory permissions:

– Unix/Linux: Install Apache as root, chmod 600 to all
config files and 500 to the httpd binary (optional)

– Windows 2003 Server: Only grant all permissions (Full
Control, Modify, Read & Execute, List Folder Contents,
Read, Write) on the installation folder of the Apache to
the Administrator as well as the new user id running the
Apache and remove all users and permissions
(including inherited permissions) from that folder.

• Logging:
– Log and analyze everything (maybe even use

mod_log_forensic) and ensure the logs have not been
tampered with

Berlin, Germany - 29.12.2004Risk Advisory Services14

Basic principles of Apache security
The do’s and don’ts of httpd.conf (cont.)
• HTTP fingerprinting:

– Use the ServerTokens and ServerSignature directive to
prevent people from fingerprinting your HTTP server:
• ServerSignature Off
• ServerTokens Prod
• Ultimately send a customized Server:-header (Apache 2 only!)

or modify the source code directly
• Symbolic links:

– Disable symbolic links
– If necessary re-enable them for certain directories and

use SymLinksIfOwnerMatch to make the server only
follow symbolic links for which the target file or directory
is owned by the same user id as the link

Berlin, Germany - 29.12.2004Risk Advisory Services15

Basic principles of Apache security
The do’s and don’ts of httpd.conf (cont.)
• Indexing:

– Disable indexing to prevent content from being accidentally
exposed to the public and eventually found by Google (e.g. “Index
of /backup“):
• Options None or Options -Indexes

– If necessary, re-enable it only for certain directories you are aware
of

• SSI:
– Best practice: Disable server-side includes completely
– If necessary, use suexec, enable SSI and disable certain

commands (e.g. #exec cmd and #exec cgi):
• Options –IncludesNOEXEC
• XBitHack off

– Note: Users will still be able to #include virtual CGI scripts from
ScriptAliased directories.

Berlin, Germany - 29.12.2004Risk Advisory Services16

Basic principles of Apache security
The do’s and don’ts of httpd.conf (cont.)
• .htpasswd and .htaccess files:

– Disable access to those files completely as they
possibly contain sensitive information:
<Files ~ "^\.ht">

Order allow,deny
Deny from all

</Files>
– This is a default configuration but some people seem to

disable this functionality?!
• AllowOverride:

– Beware of the power of those directives that can be
used in .htaccess files!
• Use AllowOverride AuthConfig or AllowOverride None

Berlin, Germany - 29.12.2004Risk Advisory Services17

Basic principles of Apache security
The do’s and don’ts of httpd.conf (cont.)

• Default content:
– Remove any default content (e.g. manual, icons, CGI

scripts, samples etc.) as well as any third-party stuff or
vendor gadgets

• Modules:
– Simple rule: Due to performance and security reasons

disable all modules that you do not explicitly need
(candidates for instance are: mod_usertrack,
mod_status, mod_proxy*, mod_isapi, mod_info,
mod_include, mod_imap, mod_example, mod_dav*,
mod_cern_meta, mod_autoindex, mod_userdir,
mod_auth_anon, mod_asis)

Berlin, Germany - 29.12.2004Risk Advisory Services18

Configuration analysis
Default httpd.conf
• Most administrators (>80%) use the default

configuration provided by the Apache
• This configuration file is fine but may be

optimized security-wise by
– Define an explicit IP address and port Apache should

listen on
– Define a user and group Apache should run as
– Remove any default content (e.g. manual, CGI scripts),

unused modules as well as possibly vendor-provided
extras (e.g. SDB)

– Restrict access to local file system
– Reduce amount of information leakage

Berlin, Germany - 29.12.2004Risk Advisory Services19

Configuration analysis
Default httpd.conf (cont.)
• Set an interface to listen on as well as a user and group:

– Listen A.B.C.D:80
– User wwwuser
– Group wwwgroup

• Disallow access to the root directory of the file system:
<Directory />
Options FollowSymLinks
AllowOverride None
</Directory>

<Directory />
Options None
AllowOverride None
Order Deny,Allow
Deny from all
</Directory>

Berlin, Germany - 29.12.2004Risk Advisory Services20

Configuration analysis
Default httpd.conf (cont.)
• Disable directory indexing and symbolic links

<Directory “/usr/local/apache2/htdocs">
Options Indexes FollowSymLinks
Order allow,deny
Allow from all
</Directory>

<Directory “/usr/local/apache2/htdocs">
Options None
Order allow,deny
Allow from all
</Directory>

Berlin, Germany - 29.12.2004Risk Advisory Services21

Configuration analysis
Default httpd.conf (cont.)
• Remove mod_userdir to disable user

directories
• Restrict the banners displayed to a minimum

ServerTokens Full
ServerSignature On

ServerTokens Prod
ServerSignature Off

• If you are more paranoid use mod_headers to
send a customized Server:-header (or modify
the source code directly)

Berlin, Germany - 29.12.2004Risk Advisory Services22

Configuration analysis
Default httpd.conf (cont.)

• Disable and remove default directories (e.g.
/icons/, /manual/), e.g.
Alias /icons/ "/usr/local/apache2/icons/"
<Directory "/usr/local/apache2/icons">

Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

Berlin, Germany - 29.12.2004Risk Advisory Services23

Configuration analysis
Typical configuration mistakes
• Not keeping up to date
• Use of standard Apache configuration

(modules, information leakage, indexing,
directory access)

• Improper privilege separation
• Insecure use of third party modules (e.g. PHP)

or applications
• Open proxies
• Application-level vulnerabilities
• …

Berlin, Germany - 29.12.2004Risk Advisory Services24

Advanced Apache security
Chrooting Apache
• Chroot replaces the root directory of a process with

one of the users' choosing, effectively creating a
sandbox in which he or she selectively allows access
to a small number of operating system features. So
even if an attacker compromises a system he or she
has only access to the sandbox environment instead
of the entire system.

• However the setup of a chrooted or jailed (*BSD)
environment is a very complex and time-consuming
task and should be performed by experienced admins
only.

Berlin, Germany - 29.12.2004Risk Advisory Services25

Advanced Apache security
Chrooting Apache (cont.)
• Instructions for chrooting Apache 2 are available on

the web (e.g. slashr00t.org, securityfocus.com),
however generally speaking the following steps must
be taken:
– Download and install Apache
– Create a stripped-down copy of the local file system which should

act as a basis for the chroot environment
– Copy all files, directories, programs and libraries needed by the

Apache into that environment
– Optionally install the chroot environment on a separate partition

with the nosuid option set and remove all suid as well as sgid
programs etc. possibly allowing an attacker to escape

– Modify Apache‘s start scripts etc. to reflect the new setup

Berlin, Germany - 29.12.2004Risk Advisory Services26

Advanced Apache security
Watch your parameters with mod_parmguard
• Quoting securityfocus.com: “Mod_parmguard is a

module that intercepts the requests and rejects those
which are not compliant with the constraints expected
by the scripts. Use a XML configuration file that
describe the type and allowed values for the
parameters. “

• Equipped with automated tools helping the
administrator to build that XML-based configuration
file possibly preventing hackers from tempering with
the web applications available.

• Even though the module is considered stable, it is not
yet ready for production (further testing necessary)

Berlin, Germany - 29.12.2004Risk Advisory Services27

Advanced Apache security
Watch your parameters with mod_parmguard (cont.)
• Sample html form:

<HTML>
<BODY>
<FORM ACTION=“input.php” METHOD=GET>
Name: <INPUT TYPE=TEXT NAME=“name” SIZE=10>
Age: <INPUT TYPE=TEXT NAME=“age” SIZE=2>
Salutation:
<SELECT name=“salutation”>
<OPTION value=“ms”>Ms</OPTION>
<OPTION value="mr">Mr</OPTION>
</SELECT>
<INPUT TYPE=SUBMIT VALUE=“Submit”>
</FORM>
</BODY>
</HTML>

Berlin, Germany - 29.12.2004Risk Advisory Services28

Advanced Apache security
Watch your parameters with mod_parmguard (cont.)
• Appropriate mod_parmguard XML config file (partially):

<match>input.php</match>
<parm name="name">

<type name="string"/>
<attr name="maxlen" value="10"/>
<attr name="charclass" value="^[a-zA-Z]+$"/>

</parm>
<parm name="age">

<type name="integer"/>
<attr name="minval" value="10"/>
<attr name="maxval" value="99"/>

</parm>
<parm name=“salutation">

<type name="enum"/>
<attr name="multiple" value="0"/>
<attr name="option" value="ms"/>
<attr name="option" value="mr"/>

</parm>

Berlin, Germany - 29.12.2004Risk Advisory Services29

Advanced Apache security
Fighting denial of service-attacks

• According to its web site nuclearelephant.com,
“mod_dosevasive is an evasive maneuvers
module for Apache to provide evasive action in
the event of an HTTP DoS or DDoS attack or
brute force attack. It is also designed to be a
detection and network management tool, and
can be easily configured to talk to firewalls and
routers and etc. mod_dosevasive presently
reports abuses via email and syslog facilities.”

Berlin, Germany - 29.12.2004Risk Advisory Services30

Advanced Apache security
Fighting denial of service-attacks (cont.)
• Detection is performed by creating an internal dynamic

hash table of IP Addresses and URIs, and denying
any single IP address from any of the following:
– Requesting the same page more than a few times per second
– Making more than 50 concurrent requests on the same child

process per second
– Making any requests while temporarily blacklisted (on a blocking

list)
• In combination with various other techniques (e.g.

ingress- and egress-filtering - see RFC2827, traffic
shaping, forbid IP spoofing) the module can (partially)
help mitigate against DoS and DDos attacks.

Berlin, Germany - 29.12.2004Risk Advisory Services31

Advanced Apache security
Introducing mod_security
• Quoting modsecurity.org: “ModSecurity is an

open source intrusion detection and prevention
engine for web applications. Operating as an
Apache web server module, the purpose of
modsecurity is to increase web application
security, protecting web applications from
known and unknown attacks.”

• It basically provides request filtering, anti-
evasion techniques, POST payload analysis,
extensive audit logging, built-in chroot functions
and HTTPS filtering.

Berlin, Germany - 29.12.2004Risk Advisory Services32

Advanced Apache security
Request filtering with mod_security
• Define rules to target common web application attacks

(selective targeting possible):
Command execution attacks
– SecFilter /etc/password
– SecFilter /bin/ls

Directory traversal and XSS attacks
– SecFilter "\.\./“
– SecFilter "<(.|\n)+>"
– SecFilter "<[[:space:]]*script"

SQL injection attacks
– SecFilter "delete[[:space:]]+from"
– SecFilter "insert[[:space:]]+into"
– SecFilter "select.+from"

Berlin, Germany - 29.12.2004Risk Advisory Services33

Advanced Apache security
Request and response filtering with mod_security
• Continued:

Forbid file upload
– SecFilterSelective "HTTP_CONTENT_TYPE" multipart/form-data

MS SQL specific SQL injection attacks
– SecFilter xp_enumdsn
– SecFilter xp_filelist
– SecFilter xp_availablemedia
– SecFilter xp_cmdshell
– SecFilter xp_regread
– SecFilter xp_regwrite
– SecFilter xp_regdeletekey

Prevent a vulnerable script from being exploited
– SecFilterSelective "ARG_recipient" "!@de.ey.com$

Output filtering
– SecFilterSelective OUTPUT "Fatal error:" deny,status:500

mailto:@de.ey.com

Berlin, Germany - 29.12.2004Risk Advisory Services34

Advanced Apache security
Logging with mod_security

• Mod_security provides enhanced logging
capabilities:
Enable debugging and increase debug level
– SecFilterDebugLog logs/mod_sec_debug.log
– SecFilterDebugLevel 3

Audit logging and attack response
– SecAuditLog /usr/local/apache2/logs/mod_sec_audit.log
– SecAuditEngine DynamicOrRelevantOnly

Berlin, Germany - 29.12.2004Risk Advisory Services35

Advanced Apache security
More magic with mod_security

• Mod_security provides built-in chroot support:
SecChrootDir /usr/local/apache2

• Set any server signature
– SecServerSignature “Microsoft-IIS/5.0”

• Verify uploaded files (e.g. use virus scanner):
– SecUploadApproveScript /path/to/some/script

• Flexible attack response (e.g. log, deny,
redirect, delay, exec etc.)
– SecFilter KEYWORD “exec:/home/seb/report.pl”

Berlin, Germany - 29.12.2004Risk Advisory Services36

Demonstration
A little less presentation, a little more action

Demonstration #1:
As part of a reverse proxy setup mod_security
(on Apache) successfully shields a vulnerable
web application on a Microsoft Internet
Information server.

Berlin, Germany - 29.12.2004Risk Advisory Services37

Summary
Coming closer to the end…

• First of all: There is no 100% security.
• But: After years of development (~9-10 years)

and going through an enormous testing
process, Apache IS quite secure (even out of
the box) *hurray*.

• Additionally using the techniques described in
this document (as well as those described in
other guidelines) Apache’s security can even
be tightened more providing a presumably high
level of security.

Berlin, Germany - 29.12.2004Risk Advisory Services38

Further information
Good reads on Apache (offline)

• “Apache Security”, Ivan Ristic, O’Reilly, 2005
(ISBN: n/a), not yet released

• “Maximum Apache Security”, anonymous,
Sams Publishing, 2002 (ISBN: 0-672-32380-X)

• “Apache Webserver”, Lars Eilebrecht et. al,
Mitp, 2003 (ISBN: 3-826-61342-2)

• “Apache Webserver 2 - Installation,
Konfiguration, Programmierung”, Sebastian
Wolfgarten, Addison & Wesley, 2nd edition
2004 (ISBN: 3-827-32118-2)

Berlin, Germany - 29.12.2004Risk Advisory Services39

Further information
Apache-related online resources (digest)
• Apache manual, http://httpd.apache.org
• ApacheWeek, http://www.apacheweek.com
• Ryan C. Barnett, “Securing Apache” (SANS),

http://www.cgisecurity.com/lib/ryan_barnett_gc
ux_practical.html

• Artur Maj, “Securing Apache: Step-by-Step”,
http://www.securityfocus.com/infocus/1694

• Ivan Ristic, http://www.modsecurity.org
• Denice Deatrich, “Chrooting Apache”,

http://penguin.triumf.ca/chroot.html

http://httpd.apache.org
http://www.apacheweek.com
http://www.cgisecurity.com/lib/ryan_barnett_gc
http://www.securityfocus.com/infocus/1694
http://www.modsecurity.org
http://penguin.triumf.ca/chroot.html

Berlin, Germany - 29.12.2004Risk Advisory Services40

Apache Security
Acknowledgements

• I would now like to thank the following people
for helping me creating this presentation:

– Ivan Ristic, Thinking Stone Ltd.
– Hugh Callaghan, Ernst & Young Dublin/Ireland
– Jens Wolfgarten, Pharmapp Solutions GmbH
– Krisztian Piller, European Central Bank

Berlin, Germany - 29.12.2004Risk Advisory Services41

Apache Security
The end.

Thanks for your (long) patience
and attention!

I would now like to
answer your questions.

By the way, this presentation (and various other
Apache and security-related material) is available

online at http://www.slashr00t.org.

http://www.slashr00t.org

