The Kernel Accelerator Device

-reconfigurable computing for the kernel-

Lecture held at 21C3 in Berlin by Ludwig Jaffé

www.openhardware.de

Why do we want the **KAD**?

- Many things we like are too slow
 - drive encryption
 - cryptoanalysis
 - DSP-functions for video-transcoding
- How to solve computing-intensive problems?
 - The conventional way:
 - throw more mips at the problems
 - and transform yor computer room into a sauna club -
 - The smarter way
 - use reconfigurable hardware ...

What is the **KAD**?

- The KAD is
 - a reconfigurable computer subsystem.
 - user-configurable to do computing intensive jobs in hardware
 - as easy to use as a kernel module in linux
 - a piece of open source hardware
- The KAD consists of
 - PCI-Card with FPGAs
 - compiled vhdl (and/or verilog) code which does certain jobs
 - special kernel modules to make the KAD useable for the masses

How does it work?

- 1. The user loads a special kernel module she wants to use. (e.g. loop-AES with KAD-Support)
- 2. The kernel module sets up communication to KAD via PCI
- 3. The kernel module configures the KAD to do the dirty job with firmware precompiled from open-source hdl-code. (e.g. it loads an AES-IP-Core with some glue logic into the FPGAs)
- 4. The kernel module does the dirty job by mostly transfering data between other kernel components and the KAD (using memory mapped IO this means quite low CPU-load.)
- 5. The user unloads the special kernel module (the module wipes the keys -if any- inside the FPGAs and erases them)

What does reconfigurable computing? General-purpose vs. reconfigurable computers 1/2

- General-purpose computers:
 - program a fixed component (CPU) to do the things.
 - step in *sequence* through a set of instructions in the dimension of **time**:

Example: Adding two numbers using a CPU:

MOV	A,23	;Load Register A
-----	------	------------------

- MOV B,42 ;Load Register B
- ADD A,B ;The sum is in Register A
- MOV Result, A ; Store the Result

If we want to add (a+b and c+d) we need to execute the program twice which means that we need *twice the time*.

What does reconfigurable computing? General-purpose vs. reconfigurable computers 2/2

- Reconfigurable computers:
 - program a programable component (FPGA) to do the things.
 - compute using configued functional units and interconnects.
 - compute in *parallel* specific, configured operations in the dimension of **space**.

Example: Adding two numbers using a FPGA:

If we want to add (a+b and c+d) the same time we need two adders, which means that we need *twice the space*.

What is so special about FPGAs?

FPGA

- means Field Programable Gate Array
- consists of
 - Logic Blocks (the idea is similar but the implementations differ slightly)
 - called *Logic Elements (LE)* by Altera
 - called *Configurable Logic Blocks (CLB)* by Xilinx
 - programable Routing fabric
 - universal I/O-Cells
 - some extras such as PLLs, dedicated RAM, dedicated functions (e.g. Multipliers)

What is so special about FPGAs? Structure of a FPGA

What is so special about FPGAs What does a Logic Element look like?

The Architecture of the KAD <1/4>

The System-View

Userland Application	load/unload kernel module + application specific stuff		
KAD-Kernel Module	configures FPGAs with Firmware + supports FPGA		
Bus Transport (PCI)	66Mhz, 32Bit PCI, VIO=3.3V / USB2.0? / PCMCIA ?		
KAD Bridge-FPGA	PCI2Wishbone bridge & Reconfiguration Engine		
user reconfigurable FPGA	s do the job: Encryption, DSP-Functions, cryptoanalysis		

The Architecture of the KAD <2/4>

The Hardware-View

- pci2wishbone bridge
- wishbone SoC-Bus
- reconfiguration of SRAM-based FPGAs

- Expansion Ports
 - possible Interconnects using plugs and flat cable
 - expansion modules HW-Random, SRAM etc.

The Architecture of the KAD <3/4>

- The Operating System -View
 - Userland interface
 - depends on intended application
 - KAD-Kernel modules
 - include pre-compiled VHDL as firmware
 - have firmware loader to configure the FPGAs
 - support their firmware inside the FPGAs
 - initiate and coordinate data transfers (memory mapped IO via PCI)
 - interface to other kernel modules and/or userland

The Architecture of the KAD <4/4>

- The VHDL-View
 - Use of IP-Cores
 - provides fast time to "market" and lowers risks
 - open-source IP-cores are combined to form a system
 - additional vhdl-code does the needed interfacing and some special stuff like reconfiguration
 - How to compile, fit and simulate?
 - We use no-cost tools by the FPGA vendors (Altera vs. Xilinx)
 - VHDL-Versions are treated as part of the kernel- modules to prevent chaos and frustration

Open Source Hardware

- Design Reusability
- Resources about Open Source Hardware
 - www.opencores.org (IP-Cores)
 - www.openhardware.de (KAD-Project)
 - www.opencollector.org (Info about open source HW)
- EDA-Tools
 - GNUeda vs. free closed source eda

How can I participate?

- The KAD-Project needs
 - Architects to define the datailed KAD concept (20% done)
 - Hardware Designers (5% done)
 - VHDL-coders and integrators (0% done)
 - Kernel module coders (0% done)
 - Ideas for new applications (never done)